• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cooperative Mobility in Urban Environments

Hardes, Tobias 15 July 2024 (has links)
Platooning ermöglicht koordiniertes Fahren in Konvois, um Straßenauslastung, Emissionen, Verkehrsfluss und Sicherheit zu optimieren. Obwohl ursprünglich für Autobahnen entwickelt, könnten besonders urbane Gebiete, die mit Luftverschmutzung, Unfällen und Staus konfrontiert sind, von Platooning profitieren. Bisherige Platooning-Konzepte sind jedoch nicht speziell für urbane Umgebungen ausgelegt. In dieser Dissertation untersuchen wir erstmalig die Vorteile und Herausforderungen des urbanen Platoonings, speziell in Bezug auf Intra- und Inter-Platoon Kommunikation und Koordination in urbanen Gebieten. Zu diesem Zweck evaluieren wir die Realisierbarkeit von Platooning in urbanen Umgebungen unter Beachtung von Mobilitäts- und drahtlosen Kommunikationsaspekten. Unser Ansatz zur dynamischen Bildung von Platoons bringt deutliche Verbesserungen hinsichtlich der Fahrzeit und des Kraftstoffverbrauchs im urbanen Kontext im Vergleich zum konventionellen Fahren. Ferner zeigen wir die Limitationen der Nutzung von reiner IEEE 802.11p-basierten Kommunikation und zeigen die Schwächen von Vehicular Visible Light Communication (V-VLC) in urbanen Umgebungen, verglichen mit dessen vorteilhafter Anwendung auf Autobahnen. Zweitens stellen wir innovative Strategien für die Kommunikation innerhalb eines Platoons vor. Das Ergebnis ist LUNA, ein neuartiger Ansatz, der Beamforming und Full-Duplex Relaying (FDR) für urbanes Platooning kombiniert. Unsere Untersuchungen zeigen, dass LUNA im Gegensatz zu traditionellen Ansätzen wie V-VLC, sowohl für Autobahn- als auch für urbane Szenarien geeignet ist, mit einer PDR von 100 % und nahezu keinem Paketverlust in urbanen Umgebungen. Drittens untersuchen wir das Potenzial urbaner Infrastruktur zur Koordination zwischen Platoons in Smart Cities. Wir zeigen, dass der opportunistische Einsatz von unbemannten Luftfahrzeugen (UAVs) zur Weiterleitung drahtloser Übertragungen von Fahrzeugen nicht nur gewinnbringender ist als ein dedizierter UAV-Einsatz, sondern auch den Kanalzugriff über mehrere Platoons koordinieren kann. Dies reduziert den Paketverlust im Vergleich zu Szenarien ohne UAVs erheblich. Diese Arbeit demonstriert die Machbarkeit von Urban Platooning, stellt Methoden für zuverlässige drahtlose Kommunikation vor und legt damit einen Grundstein für zukünftige Forschungen.:Abstract Kurzfassung 1 Introduction 2 Fundamentals 2.1 Control Systems............................... 12 2.2 Communication in Vehicular Networks ................. 16 2.3 Intra-Platoon Communication ...................... 31 2.4 Unmanned Aerial Vehicles in Smart Cities .................. 33 3. Urban Platoon Formation 39 3.1 State of the Art ............................... 42 3.2 Platoon Formation ............................. 44 3.3 Simulative Evaluation ........................... 48 3.4 Lessons Learned............................... 52 4 Wireless Communication Challenges for Urban Platooning 53 4.1 State of the Art ............................... 56 4.2 Heterogeneous Communication Protocols using Vehicular Visible Light Communication(V-VLC).......................... 57 4.3 Simulative Evaluation ........................... 59 4.4 Lessons Learned............................... 67 5 Beamforming for Platoons 71 5.1 State of the Art ............................... 74 5.2 Experimental Validation .......................... 76 5.3 Simulative Evaluation ........................... 79 5.4 Lessons Learned............................... 87 6 Full-Duplex Relaying and Beamforming for Platoons 89 6.1 State of the Art:Full-Duplex Relaying ................. 92 6.2 The Need for Multi-Hop Relaying Approaches for Platoons . . . . . 94 6.3 LUNA (full duplex relaying with beamforming) . . . . . . . . . . . 94 6.4 Simulative Evaluation: Freeway Platooning . . . . . . . . . . . . . . 96 6.5 Lessons Learned:Freeway Platooning ................. 104 6.6 State of the Art: Full-Duplex Relaying for Urban Environments . . 105 6.7 Simulative Evaluation: Urban Platooning . . . . . . . . . . . . . . . 106 6.8 Lessons Learned:Urban Platooning................... 112 7 Utilization of Unmanned Aerial Vehicles (UAVs) in Cooperative Urban Wireless Networks 117 7.1 An Open-Source Fully Modular Multi Unmanned Aerial Vehicle (UAV) Simulation Framework........................... 122 7.2 State of the Art: Unmanned Aerial Vehicles (UAVs) in Wireless Networks ..................................... 133 7.3 Opportunistic Relaying........................... 135 7.4 Simulative Evaluation ........................... 136 7.5 Influences on Opportunistic Relay Success . . . . . . . . . . . . . . . 139 7.6 Optimized Missions vs. Opportunistic Relaying . . . . . . . . . . . . 147 7.7 Lessons Learned............................... 148 8 Unmanned Aerial Vehicle (UAV) Supported Urban Platooning 151 8.1 State of the Art ............................... 154 8.2 Inter-Platoon Channel Access Coordination with Unmanned Aerial Vehicles(UAVs) ............................... 154 8.3 Simulative Evaluation ........................... 157 8.4 Lessons Learned............................... 159 9 Conclusion 161 Bibliography 177 / Platooning empowers vehicles to drive in coordinated convoys, improving road utilization, emissions, traffic flow, and road safety. To realize platooning, reliable wireless communication is required. Although designed for freeways, platooning could be especially beneficial in urban environments facing pollution, accidents, and congestion challenges. However, current system designs for platooning are not tailored to the characteristics of urban environments. This dissertation addresses the benefits and challenges of wireless communication among platooning vehicles (intra-platoon communication) and the coordination of multiple platoons (inter-platoon coordination) for the first time with a dedicated focus on urban environments. For this, we first evaluate the viability of platooning in urban environments, considering mobility and wireless communication aspects. Using our approach for dynamic platoon formation, we show that urban platooning massively enhances travel time and fuel consumption compared to traditional driving. Additionally, we demonstrate the limitations of solely using Radio Frequency (RF) communication and underscore the shortcomings of Vehicular Visible Light Communication (V-VLC) in urban environments compared to its beneficial use on freeways. Second, we present novel strategies for intra-platoon communication, resulting in LUNA, a novel approach combining beamforming and Full-Duplex Relaying (FDR) for urban platooning. Our evaluation shows that LUNA, unlike traditional approaches such as V-VLC, is appropriate for freeway and urban scenarios, achieving a 100 % PDR on freeways and negligible packet loss in an urban environment. Third, we investigate the potential of urban infrastructure for inter-platoon coordination in future smart cities. We show that an opportunistic use of Unmanned Aerial Vehicles (UAVs) to relay wireless transmissions of vehicles outperforms a dedicated UAV deployment and can further coordinate wireless channel access, substantially reducing packet loss compared to scenarios without UAVs. In this thesis, we demonstrate the feasibility of urban platooning and present approaches for reliable wireless communication, thereby providing a step towards its realization and the foundation for future research.:Abstract Kurzfassung 1 Introduction 2 Fundamentals 2.1 Control Systems............................... 12 2.2 Communication in Vehicular Networks ................. 16 2.3 Intra-Platoon Communication ...................... 31 2.4 Unmanned Aerial Vehicles in Smart Cities .................. 33 3. Urban Platoon Formation 39 3.1 State of the Art ............................... 42 3.2 Platoon Formation ............................. 44 3.3 Simulative Evaluation ........................... 48 3.4 Lessons Learned............................... 52 4 Wireless Communication Challenges for Urban Platooning 53 4.1 State of the Art ............................... 56 4.2 Heterogeneous Communication Protocols using Vehicular Visible Light Communication(V-VLC).......................... 57 4.3 Simulative Evaluation ........................... 59 4.4 Lessons Learned............................... 67 5 Beamforming for Platoons 71 5.1 State of the Art ............................... 74 5.2 Experimental Validation .......................... 76 5.3 Simulative Evaluation ........................... 79 5.4 Lessons Learned............................... 87 6 Full-Duplex Relaying and Beamforming for Platoons 89 6.1 State of the Art:Full-Duplex Relaying ................. 92 6.2 The Need for Multi-Hop Relaying Approaches for Platoons . . . . . 94 6.3 LUNA (full duplex relaying with beamforming) . . . . . . . . . . . 94 6.4 Simulative Evaluation: Freeway Platooning . . . . . . . . . . . . . . 96 6.5 Lessons Learned:Freeway Platooning ................. 104 6.6 State of the Art: Full-Duplex Relaying for Urban Environments . . 105 6.7 Simulative Evaluation: Urban Platooning . . . . . . . . . . . . . . . 106 6.8 Lessons Learned:Urban Platooning................... 112 7 Utilization of Unmanned Aerial Vehicles (UAVs) in Cooperative Urban Wireless Networks 117 7.1 An Open-Source Fully Modular Multi Unmanned Aerial Vehicle (UAV) Simulation Framework........................... 122 7.2 State of the Art: Unmanned Aerial Vehicles (UAVs) in Wireless Networks ..................................... 133 7.3 Opportunistic Relaying........................... 135 7.4 Simulative Evaluation ........................... 136 7.5 Influences on Opportunistic Relay Success . . . . . . . . . . . . . . . 139 7.6 Optimized Missions vs. Opportunistic Relaying . . . . . . . . . . . . 147 7.7 Lessons Learned............................... 148 8 Unmanned Aerial Vehicle (UAV) Supported Urban Platooning 151 8.1 State of the Art ............................... 154 8.2 Inter-Platoon Channel Access Coordination with Unmanned Aerial Vehicles(UAVs) ............................... 154 8.3 Simulative Evaluation ........................... 157 8.4 Lessons Learned............................... 159 9 Conclusion 161 Bibliography 177
2

Self-organization in networks of mobile sensor nodes

Blum, Christian 10 December 2015 (has links)
Selbstorganisierte drahtlose (ad hoc) Multihopnetzwerke können als einfach einsetzbare, robuste und rekonfigurierbare Kommunikationsinfrastruktur zum Beispiel in Katastrophenszenarien eingesetzt werden. Solche drahtlosen Netzwerke nutzen die Luft als geteiltes Kommunikationsmedium, was bedeutet, dass die Parameter des Netzwerks sehr orts- und zeitveränderlich sowie verrauscht sind. Intelligente Roboter können als Netzwerkknoten diese Herausforderungen bewältigen, indem sie sensomotorische Interaktion ausnutzen. Für einzelne Roboter wurde ein Algorithmus zur Exploration unbekannter Netzwerke entwickelt. Außerdem wurde gezeigt, dass eine Klasse gradientenbasierter Navigationsalgorithmen für den Fall von Signalstärkemessungen konvergiert. Es wurde zudem gezeigt wie diese Art von Algorithmen sich auf andere Aufgaben als das Finden von Netzwerkknoten erweitern lassen. Zusätzlich wurde ein Algorithmus basierend auf internen Modellen, der dem Roboter zum Beispiel ermöglicht Netzwekknoten finden oder zwei Netzwerkknoten zu überbrücken, entwickelt. Alle Algorithmen wurden in Simulation oder mit echten Robotern implementiert und evaluiert. Für den Fall mehrerer Roboter existieren bereits viele interessante Algorithmen in der Literatur. Allerdings wird im Moment keiner dieser Algorithmen in realen Systemen eingesetzt. Einer der Gründe hierfür ist, dass naive Sachwarmalgorithmen meist nicht sicher und zuverlässig genug sind. Um dieses Problem zu lösen wurde eine Architektur, die auf internen Modellen basiert und interne Simulation nutzt, untersucht. Es wurden zwei Testszenarien analysiert: Im ersten Experiment sollte ein Roboter andere Roboter davor bewahren zu Schaden zu kommen und dabei gleichzeitig seine eigene Sicherheit gewährleisten und eine Aufgabe erfüllen. Im zweiten Experiment musste ein Roboter durch einen Korridor navigieren ohne mit anderen Robotern zusammenzustoßen. Die vorgeschlagene Architektur hat sich als sehr effektiv erwiesen. / Self-organized wireless multihop (ad hoc) networks can form an easily deployable, robust and reconfigurable communication infrastructure, which can be employed for example in a disaster scenario, when static communication infrastructure has been destroyed. As such wireless networks use the air as a shared physical medium, the parameters of these networks often show very space- and time-varying noisy characteristics. Intelligent robotic network nodes can overcome these problems posed by these dynamics and measurement noise by exploiting sensorimotor interaction. For single robots, an algorithm for network exploration of unknown networks for large scale outdoor scenarios has been developed. Furthermore, a class of gradient-based algorithms for navigation in wireless networs hase been shown to converge for the case of signal strength measurements. Additionally, it was shown how these algorithms can be extended to other tasks than locating a network node. Additionally, an internal model-based algorithm to solve tasks like locating a node or bridging two nodes has been developed. All algorithms have been implemented and evaluated either in simulation or on real robots. For the case of multiple robots, a lot of interesting algorithms for example for optimal placement of mobile network nodes have been presented in literature. However, none of them are being used in real world scenarios. One of the reasons for that is insufficient safety and fault tolerance of naive algorithms. To overcome this problem the use of an internal model-based architecture using internal simulation has been investigated. Two test scenarios have been investigated using this architecture: in the first experiment a robot had to prevent other robots from coming to harm while ensuring its own safety and fulfilling a task. In a second experiment, a robot had to navigate through a narrow corridor without colliding with other robots. The proposed architecture has been shown to be very effective.

Page generated in 0.0364 seconds