• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The characterization of physical parameters of a gravel bed reactor used for the treatment of acid mine drainage (AMD) by sulfate reducing bacteria (SRB) /

Lyew, Darwin J. January 1996 (has links)
The treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB) has been reported in the literature as a possible alternative to chemical treatment. The overall objective of this study was to implement such a treatment process at the mine site and specifically within the open mine pit itself. The first step of this study was to characterize process parameters. To accomplish this, a reactor was designed and built to simulate hydrodynamic conditions found in the mine pit. This reactor contained a 6$ sp{ prime prime}$ deep gravel bed in which a mixed population of SRB was inoculated. The operation of this reactor demonstrated that treatment of a continuous flow of AMD by SRB was possible, however, the response to changes in the composition of the AMD and to flow conditions was limited. The results indicated that further studies should be directed at the gravel bed itself since this was where the SRB are located and is the active site within the system. / The role of various physical parameters of a gravel bed in the biological treatment of AMD by SRB was examined. This was accomplished by using gravel of different sizes (0.25$ sp{ prime prime}$ vs. 0.5$ sp{ prime prime})$ and composition (granite vs limestone) to form 12$ sp{ prime prime}$ beds in a series of column reactors. The difference in size results in variations in the total surface area, the void volume and various volume ratios within the system. The effect of potential geological buffering by limestone was examined by using and comparing with beds composed of granite. / The gravel beds were inoculated with a mixed culture of SRB and overlaid with 6 L of AMD. After the SRB were established, a series of experiments were performed in which 16.7%, 25%, 75% and 100% of the water column was replaced with an equivalent quantity of fresh AMD. Changes in pH, ORP, electric conductivity, and concentrations of metal and sulfate were monitored for at least 28 days. Sulfate and metal removal at days 7 and 28 of each experiment were compared. The SRB can tolerate a wide range of disturbances, however, an increase in the load of fresh AMD decreased the performance of the system. The results indicated that the total surface area is of greater importance than the void volume in the overall treatment process by SRB. / A dimensionless number was constructed to describe the relationships between the physical parameters of the gravel bed. A plot of the proportion of sulfate removed and this dimensionless number could provide essential information for the sizing of a gravel bed for the purposes of sulfate reduction. This was done for each type of gravel and comparison of the two curves indicated that there was no significant difference between the two gravels. / The importance of the physical substrate for the SRB has been reported in the literature. However, no known attempt has been made to quantify the relationships between the physical parameters and the biological activity. Such information would be useful for the sizing of wetlands and other passive treatment system that uses SRB activity for the purposes of treating AMD. This study is a step towards filling this void.
2

The characterization of physical parameters of a gravel bed reactor used for the treatment of acid mine drainage (AMD) by sulfate reducing bacteria (SRB) /

Lyew, Darwin J. January 1996 (has links)
No description available.
3

An assessment of shallow water tables and the development of appropriate drainage design criteria for sugarcane in Pongola, South Africa.

Malota, Mphatso. 05 November 2013 (has links)
South Africa, in common with all countries with arid or semi-arid climatic conditions, is facing the consequences of irrigation development without effective subsurface drainage. The quality of irrigation water is also decreasing and hence more water is required for leaching. This is resulting in low irrigation water productivity, as a consequence of shallow water tables, thus limiting crop growth. This study investigated the nature and causes of shallow water table problems in the sugarcane fields of Pongola, South Africa. The DRAINMOD model was also assessed for its reliability to be used as drainage design tool in the area. A water table map of a 32 ha sugarcane field was generated using groundwater table data monitored in 36 piezometers from September 2011 to February 2012. Nearly 12 % of the 32 ha sugarcane field was found to be affected by shallow water tables of less than the 1.0 m Design Water Table Depth (WTD). The inability of the adopted Drainage Design Criteria (DDC) to cope with drainage needs was found to be the cause of the poor drainage problem. On the other hand, analysis of WTDs in a field with a poorly-maintained subsurface drainage system confirmed that the drainage problem is exacerbated by poor drainage maintenance. It was recommended that the subsurface DDC in the area be revisited and that timely maintenance also be provided The DRAINMOD model was calibrated and verified using actual WTD and Drainage Discharge (DD) data. The model evaluation results revealed that the DRAINMOD model can reliably predict WTDs, with a Goodness of fit (R2), Mean Absolute Error (MAE) and Coefficient of Residual Mass (CRM) of 0.826, 5.341 cm and -0.015, respectively. Similarly, the model evaluation results in predicting DDs were also good, with R2, MAE and CRM of 0.801, 0.181 mm.day-1 and 0.0004, respectively. A further application of the validated model depicted that drain pipes installed at depths ranging from 1.4 m to 1.8 m and a spacing ranging from 55 to 70 m, with a design discharge of 2.5 to 4.2 mm.day-1, were adequate in ensuring safe WTDs between 1.0 and 1.5 m in clay-loam soil. On the other hand, drain depths ranging from 1.4 to 1.8 m and spacing between 25 and 40 m, were found to be appropriate in maintaining WTDs between 1.0 and 1.5 m in clay soil, with drainage design discharge ranging from 2.5 to 5.1 mm.day-1. These findings suggest that the current drain spacing needs to be reduced, in order to maintain the 1 m design water table depth. Finally, for the adoptability of the DRAINMOD model in the area, the Rosetta program, a component of the HYDRUS-2D, was tested for its reliability in estimating saturated hydraulic conductivities required by the DRAINMOD model. Results of the investigation revealed that the program can reliably be used to estimate saturated hydraulic conductivities from easily accessed soil data (% sand, silt, clay and soil bulk density), with R2, MAE and CRM of 0.95, 0.035 m.day-1 and -0.031, respectively. Nonetheless, calibration of the DRAINMOD model based on saturated hydraulic conductivity estimated by the Rosetta program was recommended. The findings of this research will form the basis for implementing an agricultural drainage policy that will ensure sustainable rain-fed and irrigation crop production systems in South Africa. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
4

Sustainable drainage of sports pitches

Simpson, Murray R. January 2016 (has links)
The drainage behaviour of sports pitches is not well understood nor has performance been measured in the past. Within planning authorities there is a perceived contribution of pitch water discharge to local flood risk; whereby all the rainfall surface runoff is rapidly channelled through the drainage system to the pitch outfall. However, empirical evidence from industry suggested that this may not be a realistic assumption from observations of low drainage volumes yielded from pitch drainage systems. Furthermore, discharge constraints imposed have in many cases resulted in grossly over-designed off-line drainage attenuation systems for new sports developments through lack of understanding. In contrast, sports pitches indeed have the potential to enhance the attenuation performance of the subsoils and provide localised effective management of surface water runoff, and a significant storage volume if designed appropriately The findings in this thesis confirm that pitch bases demonstrate the key functions that are in fact reflected in the design requirements of Sustainable Urban Drainage Systems (SuDS). This PhD research project was conducted to investigate and document the performance of common pitch construction and drainage systems to better characterise the key drainage mechanisms that occur and control the flow of surface rain water through the pitch to the discharge outfall. The project developed a triangulated approach to the investigations, comprising: field measurements of climate and discharge behaviour at a range of artificial and natural turf pitches in England; laboratory physical model testing of pitch component hydraulics; and predictive mathematical modelling of how a pitch system may be expected to perform hydraulically based on key material and system drainage principles. The field monitoring systems were developed as part of the research, as was bespoke laboratory physical simulation of a pitch construction. It was found that very variable yields (% out versus % in) of water were detected from the monitored field sites. The values varied across a range of < 1 to 88%, with the natural turf providing higher yields in general. The antecedent weather patterns did not show a clear relationship with yield as might have been expected. However, it was not always possible to retrieve detailed information on the subsoil conditions or hydraulic capability reducing the conclusiveness of the discharge flow measurements. The scaled laboratory testing of pitch materials established the importance and magnitude of barriers to percolation of surface water through the layers of the pitch constructions, in particular artificial pitch profiles. It was found that a significant proportion of the total rainfall head was required to instigate percolation of surface water through the carpet and into the pitch i.e. breakthrough head. In addition, several constituent pitch materials exhibited water retention characteristics that reduced that rate of free percolation of surface water through the pitch profile. The net impact is to reduce the net available head of water to further drive flow through the layers to the pipe network drainage system. A conceptual hydraulic model, developed from the literature, was further developed into a simple numerical model. The model was informed by parameters determined from the laboratory measurements and key groundwater drainage flow theory to attempt to replicate a pitch drainage system. It was envisaged that the models would be validated by the field data, although this proved challenging as a result of the field data variability and the multivariate nature of the influences on flows measured. A key finding of the modelling was further establishing the likely head of water generated at the interfaces between the bottom of the granular sub-base and the pipe collection drainage system beneath. This resulted in limited pipe infiltration and low total flows to the outfall, further corroborating the project field results and the anecdotal observations from practitioners. The combined unique data sets provide a refined model for sports pitch drainage to both reinforce understanding and inform practical design and operation.

Page generated in 0.053 seconds