• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 17
  • 13
  • 7
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Herstellung und Charakterisierung von kanten- und vertikalemittierenden (Ga)InAs/Ga(In)As-Quantenpunkt(laser)strukturen / Fabrication and Characterization of edge and vertical emitting (Ga)InAs/Ga(In)As quantum dot (laser) structures

Krebs, Roland January 2004 (has links) (PDF)
Im Vergleich zu Quantenfilmlasern haben Quantenpunktlaser (unter anderem) die Vorteile, dass kleinere Schwellenströme zu erreichen sind und die Emissionswellenlänge über einen größeren Bereich abgestimmt werden kann, da diese aufgrund der Größenfluktuation im Quantenpunktensemble über ein breites Verstärkungsspektrum verfügen. Ziel des ersten Teils der Arbeit war es, monomodige 1.3 µm Quantenpunktlaser für Telekommunikationsanwendungen herzustellen und deren Eigenschaften zu optimieren. Es wurden sechs Quantenpunktschichten als aktive Zone in Laserstrukturen mit verbreitertem Wellenleiter eingebettet. Eine Messung der optischen Verstärkung einer solchen Laserstruktur mit sechs Quantenpunktschichten ergab einen Wert von 16.6 1/cm (für den Grundzustandsübergang) bei einer Stromdichte von 850 A/cm^2. Dadurch ist Laserbetrieb auf dem Grundzustand bis zu einer Resonatorlänge von 0.8 mm möglich. Für eine Laserstruktur mit sechs asymmetrischen DWELL-Schichten und optimierten Wachstumsparametern ergab sich eine Transparenzstromdichte von etwa 20 A/cm^2 pro Quantenpunktschicht und eine interne Quanteneffizienz von 0.47 bei einer internen Absorption von 1.0 1/cm. Aus den Laserproben wurden außerdem Stegwellenleiterlaser hergestellt. Mit einem 0.8 mm x 4 µm großen Bauteil konnte im gepulsten Betrieb Laseroszillation bis zu einer Rekordtemperatur von 156 °C gezeigt werden. 400 µm x 4 µm große Bauteile mit hochreflektierenden Spiegelvergütungen wiesen im Dauerstrichbetrieb Schwellenströme um 6 mA und externe Quanteneffizienzen an der Frontfacette von 0.23 W/A auf. Für Telekommunikationsanwendungen werden Bauteile benötigt, die lateral und longitudinal monomodig emittieren. Bei kantenemittierenden Lasern kann dies durch das DFB-Prinzip (DFB: distributed feedback) erreicht werden. Im Rahmen dieser Arbeit wurden die weltweit ersten DFB-Laser auf der Basis von 1.3 µm Quantenpunktlaserstrukturen hergestellt. Dazu wurden lateral zu den Stegen durch Elektronenstrahllithographie Metallgitter definiert, die durch Absorption die Modenselektion bewirken. Dank des etwa 100 nm breiten Verstärkungsspektrums der Laserstrukturen konnte eine Verstimmung der Emissionswellenlänge über einen Wellenlängenbereich von 80 nm ohne signifikante Verschlechterung der Bauteildaten erzielt werden. Anhand der 0.8 mm langen Bauteile wurden die weltweit ersten ochfrequenzmessungen an Lasern dieser Art durchgeführt. Für Quantenpunktlaser sind theoretisch aufgrund der hohen differentiellen Verstärkung kleine statische Linienbreiten und ein kleiner Chirp zu erwarten. Dies zeigte sich auch im Experiment. Der zweite Teil der Arbeit befasst sich mit vertikal emittierenden Quantenpunktstrukturen. Ziel dieses Teils der Arbeit war es, Quantenpunkt-VCSEL mit dotierten Spiegeln zunächst im Wellenlängenbereich um 1 µm herzustellen und auf dieser Basis die Realisierbarkeit von 1.3 µm Quantenpunkt-VCSELn zu untersuchen. Zunächst wurden undotierte Mikroresonatorstrukturen für Grundlagenuntersuchungen hergestellt, um die Qualität der Spiegelschichten zu testen und zu optimieren. Diese Strukturen bestanden aus 23.5 Perioden von Spiegelschichten aus AlAs und GaAs im unteren DBR (DBR: Distributed Bragg Reflector), einer lambda-dicken Kavität aus GaAs mit einer Quantenpunktschicht im Zentrum und einem oberen DBR mit 20 Perioden. Es konnten Resonatoren mit sehr hohen Güten über 8000 realisiert werden. Für die weiteren Arbeiten hinsichtlich der Herstellung von Quantenpunkt-VCSEL-Strukturen haben die Untersuchungen an den Mikroresonatorstrukturen gezeigt, dass es an der verwendeten MBE-Anlage möglich ist, qualitativ sehr hochwertige Spiegelstrukturen herzustellen. Aufbauend auf den Ergebnissen, die aus der Herstellung und Charakterisierung der Mikroresonatorstrukturen gewonnen worden waren, wurden nun Quantenpunkt-VCSEL-Strukturen hergestellt. Es wurden Strukturen mit 17.5 Perioden im unteren und 21 Perioden im oberen DBR sowie mit 20.5 Perioden im unteren und 30 Perioden im oberen DBR hergestellt. Erwartungsgemäß zeigten die VCSEL mit der höheren Spiegelanzahl auch die besseren Bauteildaten. Um VCSEL auch im Dauerstrich betreiben zu können, wurden Bauteile mit Oxidapertur hergestellt. Dazu wurden bei 30 µm großen Mesen die beiden Aperturschichten aus AlAs auf beiden Seiten der Kavität zur Strompfadbegrenzung bis auf 6 µm einoxidiert. Es konnte gezeigt werden, dass die Realisierung von Quantenpunkt-VCSELn im Wellenlängenbereich um 1 µm mit komplett dotierten Spiegeln ohne größere Abstriche bei den Bauteildaten möglich ist. Bei der Realisierung von 1.3 µm Quantenpunkt-VCSELn mit dotierten Spiegeln bereitet die im Vergleich zu den Absorptionsverlusten geringe optische Verstärkung Probleme. / In comparison to quantum well lasers, quantum dot lasers provide (among others) the advantages that lower threshold currents are achievable and that the emission wavelength can be tuned over a larger range because the gain spectrum is wider due to the inhomogeneous broadening of the size distribution. The first part of the thesis deals with the theoretical basics and the preliminary investigations which were done before the fabrication of 1.3 µm quantum dot lasers as well as the characteristics of these lasers. The objective of this part of the thesis was the fabrication of single mode 1.3 µm quantum dot lasers for telecommunication applications and the optimization of their properties. Six quantum dot layers were included in the active region of a laser structure with a large optical cavity. The measurement of the optical gain of such a laser structure with six quantum dot layers yielded a value of 16.6 1/cm (for the ground state transition) at a current density of 850 A/cm^2. Thus, laser operation on the ground state is possible down to a cavity length of 0.8 mm. For a laser structure with six asymmetric DWELL layers and optimized growth parameters, a transparency current density of about 20 A/cm^2 per quantum dot layer and an internal quantum efficiency of 0.47 at an internal absorption as low as 1.0 1/cm could be obtained. Based on the laser structures ridge waveguide lasers were processed. With a 0.8 mm x 4 µm large device, laser operation in pulsed mode until 156 °C could be demonstrated. 400 µm x 4 µm large devices with highly reflective mirror coatings operated in continuous wave mode showed threshold currents as low as 6 mA and external quantum efficiencies at the front facet of 0.23 W/A. With these devices continuous wave operation up to 80 °C at an output power above 1 mW is possible. For telecommunication applications devices are needed that show lateral and longitudinal single mode emission. In the case of edge emitting lasers this can be realized with the DFB principle (DFB: distributed feedback). In the scope of this thesis the worldwide first DFB lasers on 1.3 µm quantum dot laser structures were fabricated. During the process, metal gratings lateral to the ridges were defined by electron beam lithography which cause the mode selection by absorption. Due to the 100 nm broad gain spectrum of the laser structures, the emission wavelength could be tuned over a range of about 80 nm without a significant degradation of the device properties. With 0.8 mm long DFB lasers the worldwide first high frequency measurements on lasers of this kind were performed. For quantum dot lasers one theoretically expects a small static linewidth and a small chirp because of the high differential gain. This was confirmed by the experiment. The second part of the thesis deals with vertical cavity surface emitting quantum dot structures. The main objective of this part of the thesis was to fabricate quantum dot VCSELs with doped mirrors in wavelength range around 1 µm and to examine on this basis the realizability of 1.3 µm quantum dot VCSELs. At first, undoped microresonator structures for fundamental studies were fabricated in order to test and to optimize the quality of the mirror layers. These structures consisted of 23.5 periods of AlAs and GaAs mirror layers in the lower DBR (DBR: Distributed Bragg Reflector), a lambda thick GaAs cavity with a single quantum dot layer in the center and an upper DBR with 20 periods. Resonators with high quality factors well above 8000 could be realized. For the further workings concerning the fabrication of quantum dot VCSEL structures the investigations on the microresonator samples have shown that with the MBE system used it is possible to fabricate high quality mirror structures. Based on the results from the fabrication and characterization of the microresonator structures, quantum dot VCSEL structures were fabricated. The VCSEL structures were designed as bottom emitters, which means that they emit from the substrate side. This design permits the epi-side down mounting of the samples on a heat sink. Samples with 17.5 periods in the lower and 21 periods in the upper DBR as well as samples with 20.5 periods in the lower and 30 periods in the upper DBR were fabricated. To be able to operate the VCSELs in continuous wave mode, devices with oxide aperture were processed. For that purpose, on 30 µm pillars both aperture layers consisting of AlAs adjacent to the cavity were oxidized down to a diameter of 6 µm to confine the current path. It could be demonstrated that the realization of quantum dot VCSELs in the 1 µm wavelength range with doped mirrors is possible without having to accept a trade-off as to the device performance. When trying to realize 1.3 µm quantum dot VCSELs with doped mirrors one runs into problems with the optical gain which is rather low as compared to the absorption losses.
2

AlGaInP-Quantenpunkte für optoelektronische Anwendungen im sichtbaren Spektralbereich / AlGaInP Quantum Dots for Optoelectronic Applications in the Visible Spectral Range

Gerhard, Sven January 2011 (has links) (PDF)
Die Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von AlGaInP Quantenpunkten auf GaP und GaAs-Substrat. Auf Basis dieser Quantenpunkte wurden Halbleiterlaser auf GaAs hergestellt, welche bei Raumtemperatur zwischen 660 nm und 730 nm emittierten. Die Untersuchung von Breitstreifenlasern, welche aus diesen Strukturen gefertigt wurden, legen nahe, dass man mithilfe eines höheren Aluminiumanteils in größeren Quantenpunkten bei vergleichbarer Wellenlänge Laser mit besseren Eigenschaften realisieren kann. Weiterhin wurden in dieser Arbeit Quantenpunkten auf GaP-Substrat untersucht, welche in AlGaP eingebettet wurden. Da diese Quantenpunkte in Barrieren eingebettet sind, welche eine indirekte Bandlücke besitzen, ergibt sich ein nicht-trivialer Bandverlauf innerhalb dieser Strukturen. In dieser Arbeit wurden numerische 3D-Simulationen verwendet, um den Bandverlauf zu berechnen, wobei Verspannung und interne Felder berücksichtigt wurden und auch die Grundzustandswellenfunktionen ermittelt wurden. Ein eingehender Vergleich mit dem Experiment setzt die gemessenen Emissionswellenlängen und -intensitäten mit berechneten Übergangsenergien und Überlappintegralen in Verbindung. / The scope of this work is the fabrication and characterization of AlGaInP quantum dots on GaP an GaAs substrates. Based on such quantum dots, semiconductor lasers have been realized, emitting between 660 nm and 730 nm at room temperature. The examination of broad-area lasers processed on these structures suggests that active layers of larger quantum dots with higher aluminium contents lead to lasers with better performance at similar emission wavelength. Additionally, quantum dots grown on GaP substrates have been characterized, that were embedded in AlGaP barriers. Since these barriers exhibit an indirect bandgap, a non-trivial band alignment within these structures is expected. In this work, numerical 3D-simulations are employed to calculate the band alignment including strain and internal fields. Also, ground state wavefunctions of charge carriers have been determined. A thorough comparison between theory and experiment connects the measured emission wavelength and luminescence intensities with calculated transition energies and wavefunction overlaps.
3

Wachstum und Charakterisierung von GaInNAs-basierenden Halbleiterstrukturen für Laseranwendungen in der optischen Telekommunikation / Growth and characterization of GaInNAs-based semiconductor structures for laser applications in optical communication

Bisping, Dirk January 2010 (has links) (PDF)
Im Rahmen dieser Arbeit wurden mit Molekularstrahlepitaxie GaInNAs-Strukturen für mögliche Anwendungen in der Telekommunikation als GaAs-basierende Alternative für herkömmliche Laser auf InP-Substrat hergestellt und untersucht. Zunächst wurden durch Optimierung der Substrattemperaturmessung und RF-Plasmaquelle die Voraussetzungen für gutes GaInNAs-Wachstum geschaffen. Thermisches Ausheilen ist essentiell, um eine gute optische Qualität von GaInNAs-Strukturen zu erzielen. Man beobachtet einen signifikanten Einfluss von Ausheildauer und -temperatur. Exzessives Ausheilen bei zu hohen Temperaturen bzw. zu langen Zeiten führt, neben einer ebenso unerwünschten Blauverschiebung der Emission, wiederum zu einer Degradation der optischen Qualität, die sich in einer deutlichen Reduktion der Photolumineszenz(PL)-Intensität äußert. GaInNAs-Quantenfilm(QF)-Laser mit Emission um 1240 nm mit möglicher Anwendung als Pumplaser für Ramanverstärker wurden hergestellt und charakterisiert. Durch eine Optimierung des in-situ-Ausheilens dieser Laserstrukturen konnten Laser mit sehr niedrigen Schwellenstromdichten von deutlich unter 200 A/cm^2 hergestellt werden. Für eine möglichst hohe Ausgangsleistung wurde der Wirkungsgrad der Bauteile durch eine Optimierung der internen Verluste erhöht. Eine Reduktion der internen Verluste konnte durch eine Anpassung des Dotierprofils und die Verwendung von sogenannten Large-Optical-Cavities (LOCs) erreicht werden. Mit Hilfe des LOC-Designs konnten sehr niedrige interne Verluste von nur 0,5 1/cm bei einer internen Quanteneffizienz von nahezu 80 % erreicht werden. Mit optimierten Strukturen wurde stabiler Dauerstrichbetrieb bei Ausgangsleistungen von mehreren Watt über 1000~h ohne sichtbare Degradation demonstriert. Mit auf dem LOC-Design basierenden Lasern konnte schließlich eine sehr hohe Ausgangsleistung von ca. 9 W gezeigt werden. Anschließend wurden Untersuchungen zu Quantenpunkten (QPen) im Materialsystem GaInNAs vorgestellt. Mit steigendem Stickstoffgehalt beobachtet man eine Rotverschiebung der Emission bis auf 1,43 µm, allerdings gleichzeitig eine deutliche Degradation der optischen Qualität. Eine Untersuchung der QP-Morphologie ergibt eine Reduktion der Homogenität der QP-Größenverteilung, die sich im Auftreten zweier unterschiedlich großer QP-Ensembles äußert. Um diese Degradation der QPe zu vermeiden, wurde weiterhin auf den N-Einbau in den QPen verzichtet. Wider Erwarten führt der Verzicht auf N in den QPen nicht zu einer Blauverschiebung der Emission. Dieses Resultat konnte auf die veränderte QP-Morphologie zurückgeführt werden. Durch eine Erhöhung des N-Gehaltes im die QP überwachsenden QF wurde eine weitere deutliche Rotverschiebung der Emission erreicht. So konnte PL-Emission bei Raumtemperatur mit einem Emissionsmaximum bei 1600 nm demonstriert werden. Weiterhin wurden GaInNAs-QF-Strukturen für Laser im Wellenlängenbereich um 1550 nm untersucht. Da das Wachstum hier auf Grund des deutlich höheren, notwendigen N-Gehaltes wesentlich schwieriger wird, erfolgte zunächst eine detaillierte Untersuchung der wesentlichen Wachstumsparameter. Hierbei ist es essentiell, auch das Ausheilverhalten der jeweiligen Strukturen genau zu betrachten. Bei einer Untersuchung des Einflusses der Wachstumstemperatur auf GaInNAs-Teststrukturen wurden signifikante Unterschiede auch bei nur sehr geringen Änderungen in der Substrattemperatur von nur 10 °C festgestellt. Die beobachteten Effekte wurden vor dem Hintergrund des Modells der QP-ähnlichen Emitter diskutiert. Eine Variation des Arsen-Flusses zeigte einen deutlichen Einfluss auf die PL-Emission und vor allem auf das Ausheilverhalten. Das Ausheilverhalten lässt sich durch eine Anpassung des Arsen-Flusses maßgeschneidert anpassen. Während dem Überwachsen der aktiven Schicht mit Mantel- und Kontaktschicht kann es bereits zu einem Überausheilen der Strukturen kommen. Es wurden Laser mit niedrigen Schwellenstromdichten um 1 kA/cm^2 bis zu einer Wellenlänge von 1500 nm hergestellt. Für höhere Wellenlängen steigt die Schwellenstromdichte in den Bereich von 2 bis 3 kA/cm^2. Maximal wurde Laseremission bei über 1600 nm erreicht. Bei der Untersuchung der bei 1600 nm emittierenden Laserdioden wurde eine Verbreiterung der Laseremission zur hochenergetischen Seite auf bis zu 150 nm Bandbreite bei steigendem Betriebsstrom beobachtet. Dieser Effekt kann mit Hilfe des Modells der QP-ähnlichen Emitter verstanden werden. Unter Ausnutzung dieses Effekts wurden auf dem selben epitaktischen Material monomodige Distributed-Feedback(DFB)-Laser über einen Wellenlängenbereich von ca. 1500 nm bis 1600 nm gezeigt. Auf Basis der zuvor vorgestellten langwelligen Laserstrukturen mit niedrigen Schwellenstromdichten wurde erstmals Dauerstrichbetrieb von monomodigen DFB-Lasern im Bereich um 1500 nm und von multimodigen Stegwellenleiter-Lasern über 1500 nm im Materialsystems GaInNAs gezeigt. / In this work, GaInNAs structures for telecom application based on GaAs in contrast to common lasers based on InP substrates have been grown by molecular beam epitaxy and subsequently characterized. First, optimizations of substrate temperature measurement and RF plasma source were incorporated to allow high quality GaInNAs growth. Thermal annealing is crucial to achieve high optical quality of GaInNAs structures. After a discussion of the microscopic processes during annealing, the influence of annealing parameters was examined. Excessive annealing with too high temperatures or too long times can, besides the typical blue-shift of the emission, also result in a decrease of the optical quality leading to a considerable reduction of the photoluminescence intensity. Laser diodes based on GaInNAs quantum wells emitting around 1240nm have been grown and characterized for a potential application as pump sources for Raman amplifiers. Using an optimization of the in-situ annealing during growth of these structures, laser diodes with very low threshold current densities well below 200 A/cm^2 have been realized. To achieve maximum output powers, the wallplug efficiencies of these devices have been increased by reducing the internal losses. Low internal losses have been achieved using an optimized doping profile or large optical cavities (LOCs). Using a LOC, very low internal losses of only 0.5 1/cm together with a high internal quantum efficiency of almost 80 % have been achieved. Stable performance for 1.000 h without degradation under continuous-wave operation was achieved. Using lasers with a LOC design, high maximum output powers of about 9 W have been demonstrated in continuous-wave operation. Afterwards, studies concerning quantum dots based on the GaInNAs material system have been shown. Increasing N-content leads to a redshift of the emissions wavelength up to 1.43 µm, but accompanied by a significant reduction of the optical quality. An examination of the quantum dot morphology also reveals a reduction in homogeneity of the quantum dot size distribution resulting in the occurence of quantum dot ensembles with two different sizes. To avoid this degradation of the quantum dots, N was not incorporated in the quantum dots, but only in the quantum well on top of the quantum dots. Unlike expectations, this doesn't involve a blueshift of the emission wavelength. This result could be explained by the different quantum dot morphology. By increasing the N-content in the quantum well the emission wavelength at room temperature was redshifted to 1600 nm. In addition, GaInNAs quantum well structures for laser diodes in the wavelength range around 1550 nm have been examined. Due to the more difficult growth resulting from the necessary higher N-content, a detailed examination of the growth parameters was required. Doing that, it is obligatory to take the annealing behaviour into account. A study of the influence of the substrate temperature showed a significant influence of very small differences in the range of 10 °C. Results have been discussed based on the modell of quantum dot like emitters. A variation of the arsenic flux during growth showed strong impact on photoluminescence emission and particularly annealing behaviour. The annealing behaviour can be tailored by changing the arsenic flux. Overgrowth of the quantum well with cladding and contact layers in complete laser stuctures can already result in over-annealing of the quantum well. It was possible to realize laser diodes with low threshold current densities in the range of 1 kA/cm^2 with emission wavelengths up to 1500 nm. For longer wavelengths, threshold current densities increase into the range of 2 to 3 kA/cm^2. The longest laser emission wavelength achieved was slightly above 1600 nm. Detailed examination of laser diodes emitting at 1600 nm revealed a huge broadening of the laser emission to higher energies resulting in an emission bandwidth of up to 150 nm under increasing drive current. This effect is explained using the model of quantum dot like emitters. Making use of this effect, single mode emitting distributed feedback lasers with emission wavelengths covering the whole wavelength range from 1500 to 1600 nm have been demonstrated. Based on the described long-wavelength laser diodes with low threshold current densities, continuous-wave operation of single-mode distributed feedback laser near 1500 nm and multimode ridge-waveguide lasers above 1500 nm have been shown for the first time using the GaInNAs material system.
4

Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren / Optimization of site-controlled In(Ga)As quantum dots for the integration into semiconductor micro resonators

Huggenberger, Alexander January 2012 (has links) (PDF)
Diese Arbeit beschäftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Datenübertragung, die durch Quantenkryptographie abhörsicher verschlüsselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschränkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein häufig untersuchtes System und können heutzutage mit hoher Kristallqualität durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erhöhen, wurden Mikrosäulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate für die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen Ätztechniken erreicht. Für den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema für den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. Für die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngröße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese häufig aufgrund spektraler Diffusion größer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ansätze und Strategien zur Überwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV für die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualität besitzen. Die FSS der Emission eines Quantenpunktes sollte für die direkte Erzeugung polarisationsverschränkter Photonen möglichst klein sein. Deswegen wurden unterschiedliche Ansätze diskutiert, um die FSS einer möglichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in geätzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend für den künftigen Einsatz solcher Quantenpunkte in Quellen für verschränkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschränkten Zustandes gezeigt. In Zusammenarbeit mit der Universität Tokyo wurde ein Konzept entwickelt, mit dem künftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavitäten hergestellt werden können. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikrosäulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavitätsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion für verschwindende Zeitdifferenzen nachgewiesen wurde. / The present thesis is about the fabrication of site-controlled In(Ga)As quantum dots for the scalable integration into devices. The optical properties of these quantum dots were systematically optimized with special care regarding the optical linewidth and the fine structure splitting of single quantum dots. This optimization was accomplished in order to use the quantum dots in light sources for quantum key distribution By coupling semiconductor microcavities and quantum dots one is able to realize single photon sources or sources of entangled photons. This work demonstrates the scalable integration of site-controlled quantum dots into semiconductor microresonators. The growth of In(Ga)As quantum dots on GaAs substrates is a field of vivid research nowadays and can be fabricated with high quality by molecular beam epitaxy. The emission from single quantum dots exhibits lines that resemble the discrete emission spectra of atoms. This thesis uses micropillar cavities and photonic crystal cavities to direct the emission of quantum dots and to increase the extraction efficiency. The integration into these resonator systems was done by adjusting the quantum dots’ positions to reference structures on the samples. This allows for a scalable fabrication of many spatially coupled quantum dot resonator systems The substrates were patterned using a combination of optical and electron beam lithography followed by wet or dry etching. Electrical carrier injection was realized by developing a contact scheme. The quantum dots were fabricated using a stacked growth scheme that consists of a seeding layer and an optical active quantum dot layer. Quantum dots on square lattices with a period of up to 10 mum were fabricated to enable the integration of single quantum dots into semiconductor microresonators. On the other hand, it was possible to realize periods of only 200 nm which is promising for the investigation of superradiance effects in the ensemble emission of quantum dots. The optical properties of site-controlled quantum dots were investigated by studying the photoluminescence. The emission linewidth of single quantum dots is an important benchmark for the optical quality. Site-controlled quantum dots are known to exhibit large linewidths due to the effect of spectral diffusion. Different strategies to overcome this obstacle were investigated during this work. A linewidth as low as 25 mueV was observed for a single site-controlled quantum dot (on a square lattice of 2 mum period). The statistical evaluation yields a mean value of 133 mueV for this kind of quantum dots. Both results prove the high optical quality of the site-controlled quantum dots fabricated in this work. The fine structure splitting of the quantum dot emission should be close to zero for the direct observation of polarization entangled photons. Different concepts were investigated during this work to reduce the fine structure splitting of the quantum dot ensemble. The lowest splitting obtained for site-controlled In(Ga)As quantum dots on (100) GaAs was 9.8 mueV. By growing quantum dots into inverted pyramids etched into (111) GaAs one should be able to further reduce the splitting due to the threefold symmetry of (111) GaAs. Furthermore, the piezoelectric field in (211) GaAs should compensate the fine structure splitting. Using quantum dots on these high index materials the fine structure splitting was reduced to values below 5 mueV during this work. Another concept to reduce the fine structure splitting is the application of a lateral electric field which was shown to reduce the splitting from 25 mueV to 15 mueV. For the future measurement of the degree of entanglement of photons, an experimental setup was established and its functionality was proven by measuring the temporal characteristics of an biexciton-exciton-cascade. In cooperation with the group of Prof. Arakawa from Tokyo University a concept was developed to realize single quantum dot lasers by combining site-controlled quantum dots and two- or three-dimensional photonic crystal cavities in the near future. Furthermore, with the help of an electrically driven micropillar resonator the enhancement of the spontaneous emission for spectral resonance of the cavity mode with the emission of a site-controlled quantum dot was shown. This system could be used as a single photon source which is proven by the measurement of the autocorrelation function for zero time delay.
5

Spektroskopie an positionierten III-V-Halbleiterquantenpunkten / Spectroscopy of site-controlled III-V semiconductor quantum dots

Braun, Tristan January 2016 (has links) (PDF)
Viele Forschergruppen konzentrieren sich derzeit auf die Entwicklung von neuartigen Technologien, welche den Weg für die kommerzielle Nutzung einer Quantenkommunikation bereiten sollen. Erste Erfolge konnten dabei insbesondere auf dem Gebiet der Quantenschlüsselverteilung erzielt werden. In diesem Bereich nutzt man die Eigenschaft einzelner, ununterscheidbarer Photonen nicht kopiert werden zu können, um eine abhörsichere Übertragung sensibler Daten zu realisieren. Als Lichtquellen dafür eignen sich Halbleiter-Quantenpunkte. Diese Quantenpunkte lassen sich außerdem leicht in komplexe Halbleiter-Mikrostrukturen integrieren und sind somit besonders interessant für die Entwicklung solch fortschrittlicher Technologien, welche für eine abhörischere Kommunikation notwendig sind. Basierend auf diesem Hintergrund wurden in der vorliegenden Arbeit Halbleiter-Quantenpunkte spektroskopisch hinsichtlich ihres Potentials als Quanten-Lichtquelle für die Quantenkommunikation untersucht. Dabei wurden die Quantenpunkte aus InAs/GaAs und InP/GaInP unter anderem in einem speziellen Verfahren deterministisch positioniert und letztendlich in eine photonische Mikrostruktur integriert, welche aus einer Goldscheibe und einem dielektrischen Spiegel besteht. Als Grundcharakterisierungsmittel kam hauptsächlich die Mikrophotolumineszenzspektroskopie zur Bestimmung der Emissionseigenschaften zum Einsatz. Weiterführend wurden Photonen-Korrelationsmessungen zweiter Ordnung durchgeführt, um den Nachweis einer Quanten-Lichtquelle zu erbringen. Einfluss eines RTA-Prozesses auf die Emissionseigenschaften von InAs/GaAs-Quantenpunkten Zur Untersuchung des Einflusses eines Rapid-Thermal-Annealing-Prozesses auf die elektronischen Eigenschaften und die Oszillatorstärke selbstorganisierter InAs/GaAs-Quantenpunkte wurden Mikrophotolumineszenzmessungen an verschiedenen Proben im externen Magnetfeld von bis zu 5 T durchgeführt. Die Quantenpunkte wurden dabei in einem besonderen Verfahren gewachsen, bei dem die nominelle Quantenpunkthöhe durch eine bestimmte Bedeckungsschichtdicke vorgegeben wurde. Insgesamt wurden drei Proben mit Schichtdicken von 2 nm, 3 nm und 4 nm hergestellt, die jeweils nachträglich bei Temperaturen von 750° C bis 850° C für fünf Minuten ausgeheilt wurden. Anhand polarisationsaufgelöster Spektroskopie konnten aus den aufgenommenen Quantenpunktspektren die Zeemanaufspaltung und die diamagnetische Verschiebung extrahiert und damit der effektive Landé g-Faktor sowie der diamagnetische Koeffizient bestimmt werden. Die Auswertung der Zeemanaufspaltung zeigte, dass sowohl höhere Ausheiltemperaturen als auch dickere Bedeckungsschichten zu einer drastischen Abnahme der absoluten g-Faktoren sorgen. Dies lässt darauf schließen, dass eine dickere Bedeckungsschicht zu einer stärkeren Interdiffusion der Atome und einer steigenden Ausdehnung der Quantenpunkte für ex-situ Ausheilprozesse führt. Im Gegensatz dazu steigen die diamagnetischen Koeffizienten der Quantenpunkte mit zunehmender Ausheiltemperatur, was auf eine Ausdehnung der Exzitonwellenfunktion hindeutet. Außerdem wurden mittels zeitaufgelöster Mikrophotolumineszenzspektroskopie die Lebensdauern am Quantenpunktensemble bestimmt und eine Abnahme dieser mit steigender Temperatur festgestellt. Sowohl über die Untersuchungen des diamagnetischen Koeffizienten als auch über die Analyse der Lebensdauer konnte schließlich die Oszillatorstärke der Quantenpunkte ermittelt werden. Beide Messverfahren lieferten innerhalb der Fehlergrenzen ähnliche Ergebnisse. Die höchste Oszillatorstärke \(f_{\chi}=34,7\pm 5,2\) konnte für eine Schichtdicke von d = 3 nm und einer Ausheiltemperatur von 850° C über den diamagnetischen Koeffizienten berechnet werden. Im Falle der Bestimmung über die Lebensdauer ergab sich ein maximaler Wert von \(f_{\tau}=25,7\pm 5,7\). Dies entspricht einer deutlichen Steigerung der Oszillatorstärke im Vergleich zu den Referenzproben um einem Faktor größer als zwei. Des Weiteren konnte eine Ausdehnung der Schwerpunktswellenfunktion der Exzitonen um etwa 70% festgestellt werden. Insgesamt betrachtet, lässt sich durch ex-situ Rapid-Thermal-Annealing-Prozesse die Oszillatorstärke nachträglich deutlich erhöhen, wodurch InAs/GaAs-Quantenpunkte noch interessanter für Untersuchungen im Regime der starken Kopplung werden. Temperatur- und Leistungsabhängigkeit der Emissionseigenschaften positionierter InAs/GaAs Quantenpunkte Um einen Einblick in den Ablauf des Zerfallsprozesses eines Exzitons in positionierten Quantenpunkten zu bekommen, wurden temperatur- und leistungsabhängige Messungen durchgeführt. Diese Quantenpunkte wurden in einem speziellen Verfahren deterministisch an vorher definierten Stellen gewachsen. Anhand der Temperaturserien konnten dann Rückschlüsse auf die auftretenden Verlustkanäle in einem Quantenpunkt und dessen Emissionseigenschaften gezogen werden. Dabei wurden zwei dominante Prozesse als Ursache für den Intensitätsabfall bei höheren Temperaturen identifiziert. Die Anhebung der Elektronen im Grundzustand in die umgebende Barriere oder in delokalisierte Zustände in der Benetzungsschicht sorgt für die anfängliche Abnahme der Intensität bei niedrigeren Temperaturen. Der starke Abfall bei höheren Temperaturen ist dagegen dem Aufbruch der exzitonischen Bindung und der thermischen Aktivierung der Ladungsträger in das umgebende Substratmaterial geschuldet. Hierbei lassen sich exemplarisch für zwei verschiedene Quantenpunkte die Aktivierungsenergien \(E_{2A}=(102,2\pm 0,4)\) meV und \(E_{2B}=(163,2\pm 1,3)\) meV bestimmen, welche in etwa den Lokalisierungsenergien der Exzitonen in dem jeweiligen Quantenpunkt von 100 meV bzw. 144 meV entsprechen. Weiterhin deckte die Auswertung des Intensitätsprofils der Exzitonemission die Streuung der Exzitonen an akustischen und optischen Phononen als Hauptursache für die Zunahme der Linienbreite auf. Für hohe Temperaturen dominierte die Wechselwirkung mit longitudinalen optischen Phononen den Verlauf und es konnten für das InAs/GaAs Materialsystem typische Phononenenergien von \(E_{LOA}=(30,9\pm 4,8)\) meV und \(E_{LOB}=(32,2\pm 0,8)\) meV bestimmt werden. In abschließenden Messungen der Leistungsabhängigkeit der Linienbreite wurde festgestellt, dass spektrale Diffusion die inhärente Grenze für die Linienbreite bei niedrigen Temperaturen setzt. Optische Spektroskopie an positionierten InP/GaInP-Quantenpunkten Weiterhin wurden positionierte InP/GaInP-Quantenpunkte hinsichtlich der Nutzung als Quanten-Lichtquelle optisch spektroskopiert. Zunächst wurden die Emissionseigenschaften der Quantenpunkte in grundlegenden Experimenten analysiert. Leistungs- und polarisationsabhängige Messungen ließen dabei die Vermutung sowohl auf exzitonische als auch biexzitonische Zerfallsprozesse zu. Weiterhin brachten die Untersuchungen der Polarisation einen ungewöhnlich hohen Polarisationsgrad der Quantenpunktemission hervor. Aufgrund von lokalen Ordnungsphänomenen in der umgebenden GaInP-Matrix wurden im Mittel über 66 Quantenpunkte der Grad der Polarisation von Exziton und Biexziton zu \(p_{Mittel}=(93^{+7}_{-9})\)% bestimmt. Des Weiteren wiesen die Quantenpunkte eine sehr hohe Feinstrukturaufspaltung von \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV auf, welche sich nur durch eine stark anisotrope Quantenpunktform erklären lässt. Durch Auto- und Kreuzkorrelationsmessungen zweiter Ordnung wurden dann sowohl der nicht-klassische Einzelphotonencharakter von Exziton und Biexziton als auch erstmalig für diese Strukturen der kaskadierte Zerfall der Biexziton-Exziton-Kaskade demonstriert. Hierbei wurden \(g^{(2)}(0)\)-Werte von bis 0,08 erreicht. Diese Ergebnisse zeigen das Potential von positionierten InP/GaInP-Quantenpunkten als Grundbausteine für Quanten-Lichtquellen, insbesondere in Bezug auf den Einsatz in der Quantenkommunikation. Realisierung einer Einzelphotonenquelle auf Basis einer Tamm-Plasmonen-Struktur Nachdem die vorangegangen Untersuchungen die Eignung der positionierten InP/GaInP-Quantenpunkte als Emitter einzelner Photonen demonstrierten, befasst sich dieser Teil nun mit der Integration dieser Quantenpunkte in eine Tamm-Plasmonen-Struktur zur Realisierung einer effizienten Einzelphotonenquelle. Diese Strukturen bestehen aus einem dielektrischen Spiegel aus 30,5 AlGaAs/AlAs-Schichtpaaren und einer einigen Zehn Nanometer dicken Goldschicht, zwischen denen die Quantenpunkte eingebettet sind. Anhand von Messungen an einer planaren Tamm-Plasmonen-Struktur wurde das Bauteil charakterisiert und neben der Exziton- und Biexzitonemission der Zerfall eines Trions beobachtet, was durch Polarisations- und Korrelationsmessungen nachgewiesen wurde. Um eine Verstärkung der Einzelphotonenemission durch die Kopplung der Teilchen an eine lokalisierte Tamm-Plasmonen-Mode demonstrieren zu können, wurde ein Bereich der Probe mit mehreren Goldscheiben von Durchmessern von 3-6 µm abgerastert und die Lichtintensität aufgenommen. Unterhalb der untersuchten Goldscheiben konnte eine signifikante Erhöhung des Lumineszenzsignals festgestellt werden. Eine quantitative Analyse eines einzelnen Quantenpunktes mittels einer Temperaturserie lieferte dabei eine maximale Emissionsrate von \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz und damit eine Effizienz von \((6,95\pm 0,76)\)% solch einer Einzelphotonenquelle unter gepulster Anregung bei 82 MHz. Dies entspricht einer deutlichen Verbesserung der Effizienz im Vergleich zu Quantenpunkten im Volumenmaterial und sogar zu denen in einer planaren DBR-Resonatorstruktur. Positionierte InP/GaInP-Quantenpunkte in einer Tamm-Plasmonen-Struktur bilden somit eine vielversprechende Basis für die Realisierung hocheffizienter Einzelphotonenquellen. / At the moment, many scientific groups focus on the development of new technologies which are supposed to lead the way to the commercial use of quantum communication. Particularly in the field of quantum key distribution first success has been achieved. These experiments make use of the fact that it is not possible to generate a perfect copy of a quantum state (Non-cloning theorem). One way to emit non-classical particles is to use semiconductor quantum dots. Furthermore such quantum dots can be easily integrated in complex semiconductor microstructures and are thus especially interesting for the development such advanced technologies, which are mandatory for a secure communication. Based on this background, the objective of the work presented in this thesis was a spectroscopic analysis of semiconductor quantum dots, regarding their potential as a quantum light source for quantum communication. In a dedicated process, amongst others, InAs/GaAs and InP/GaInP quantum dots were positioned deterministically and eventual integrated in a photonic microstructure, which consists of a gold disc and a dielectric mirror. Micro photoluminescence spectroscopy was used as a basic instrument for identifying the emission characteristics. In addition second order photon correlation measurements were performed to provide proof of a quantum light source. Impact of rapid thermal annealing on the emission characteristics of InAs/GaAs quantum dots Micro photoluminescence measurements of different samples in external magnetic fields up to 5 T have been performed in order to analyze the impact of rapid thermal annealing on the electronic properties and the oscillator strength of self-assembled InAs/GaAs quantum dots. The quantum dots were grown in a special procedure whereby the nominal quantum dot height was defined by the thickness of a capping layer. In total, three samples with capping layer thicknesses of 2 nm, 3 nm and 4 nm were processed and afterwards annealed at temperatures of 750° C up to 850° C for five minutes. The Zeeman splitting and the diamagnetic shift could be derived from the taken quantum dot spectra by means of polarization resolved spectroscopy. Hence, the effective Landé g-factors and the diamagnetic coefficient could be determined. The analysis of the Zeeman splitting demonstrated a drastic decrease of the absolute g-factors with increasing annealing temperature as well as thicker capping layers. This yield to the conclusion, that a thicker capping layer leads to a stronger interdifussion of the atoms and an increasing elongation of the quantum dots for ex-situ annealing procedures. The diamagnetic coefficients of the quantum dots rose with higher temperatures, which indicates an expansion of the excitonic wavefunction. Furthermore time resolved micro photoluminescence spectroscopy has been performed in order to assess the lifetime of the quantum dot ensemble. The lifetime decreases clearly with increasing temperatures. Both the investigations of the diamagnetic coefficient and the quantum dot lifetime finally lead to a determination of the oscillator strength and reveal values agreeing within the error bars. The highest oscillator strength \(f_{\chi}=34.7\pm 5.2\) (determined from the diamagnetic shift) could be determined for the sample with a capping layer of d = 3 nm anneald at a temperature of 850° C. In the case of the liftime measurements the oscillator strength exhibits a maximum value of \(f_{\tau}=25.7\pm 5.7\). This corresponds to a distinct enhancement of the oscillator strength of more than two compared to the reference samples. In addition an expansion of the center-of-mass wave function by about 70% has been ascertained. Taken as a whole the oscillator strength of InAs/GaAs quantum dots can be increased significantly by ex-situ rapid thermal annealing, which makes them even more interesting for investigations in the strong coupling regime. Temperature and power dependency of the emission characteristics of site-controlled InAs/GaAs quantum dots In order to investigate the decay process of an exciton in site-controlled quantum dots, temperature and power dependent measurements were performed. Those quantum dots were grown deterministically in a specific procedure on predefined positions. Existing photonic loss channels in the quantum dot were studied by performing temperature series. Hereby two dominant processes causing the decrease of the intensity at higher temperatures were identified. Initially the activation of the electron in the ground state into the surrounding barrier or into delocalized states of the wetting layer leads to a decrease of the intensity in the low temperature regime. However, the strong decrease for higher temperatures is attributed to ionization of the exciton and the subsequent activation of the carriers into the surrounding substrate. The fit yields two different activation energies \(E_{2A}=(102,2\pm 0,4)\) meV and \(E_{2B}=(163,2\pm 1,3)\) meV for two exemplary quantum dots A and B, respectively. Hence, both values correspond with the localization energies of the excitons in the respective quantum dot, which account for 100 meV and 144 meV respectively. Furthermore the analysis of the intensity profiles revealed that acoustical and optical phonons are the main reason for the broadening of the linewidth. The dependency of the linewidth for high temperatures is dominated by the interaction of the excitons with longitudinal optical phonons, where phonon energies of \(E_{LOA}=(30,9\pm 4,8)\) meV for quantum dot A and \(E_{LOB}=(32,2\pm 0,8)\) meV for quantum dot B were determined. Those values are typical for InAs/GaAs material system. In addition, the measurements indicate that the linewidth at low temperatures is caused by spectral diffusion. Optical spectroscopy of site-controlled InP/GaInP quantum dots In addtion site-controlled InP/GaInP quantum dots were investigated by means of optical spectroscopy regarding their use as a quantum light source. At first the emission features of the quantum dots were analyzed in basic experiments. Power and polarization dependent measurements were used to identify excitonic as well as biexcitonic decay processes. Furthermore the investigations of the polarization were exhibiting an unusual high degree of polarization of the quantum dot emission. The excitonic and biexcitonic emission shows a very high degree of linear polarization (\(p_{Mittel}=(93^{+7}_{-9})\)%), which is caused by local composition modulation phenomena in the surrounding GaInP matrix. For this calculation the average value was taken out of 66 quantum dots. In addition the quantum dots exhibited very large fine structure splittings of \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV, which can be explained only with a strong anisotropic quantum dot shape. Second order autocorrelation measurements revealed the non-classical emission character of the exciton and the biexciton. \(g^{(2)}(0)\) values down to 0.08 have been reached. In addition, by performing crosscorrelation measurements the cascaded emission of the biexiton-exciton cascade has been demonstrated for the first time for those structures. These results show the potential of site-controlled InP/GaInP quantum dots as a basic module for quantum light sources especially regarding their use in quantum communication. Realization of a single photon source based on a Tamm-plasmon structure After the previous analysis revealed the potential of the site-controlled InP/GaInP quantum dots acting as a single photon emitter, the following part considers the integration of those quantum dots into a Tamm-plasmon structure to realize an efficient single photon source. These structures consist of a distributed Bragg reflector (DBR) with 30.5 AlGaAs/AlAs mirror pairs and a gold disc with a thickness of only a few ten nanometers. The quantum dots are located between the DBR and the gold disc at an anti-node of the Tamm-plasmon mode. The device was characterized by photoluminescence investigations of a planar Tamm-plasmon structure. Besides excitonic and biexcitonic emission features, the experiments showed the decay of a trion state, which has been confirmed by polarization and correlation measurements. In order to demonstrate an enhancement of the single photon emission due to the coupling to a localized Tamm-plasmon mode, an array of gold discs with varying diameters from 3-6 µm was scanned and the light intensity recorded. At the positions of the gold discs a significant increase of the luminescence could be detected. Investigations in more detail on a single quantum dot tuned into the Tamm-plasmon resonance by adjusting the temperature revealed a maximum emission rate of \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz and with it an efficiency of \((6,95\pm 0,76)\)% of such a single photon source when taking the repetition rate of 82 MHz into account. This is a distinct enhancement of the efficiency compared to quantum dots in bulk material or even to those embedded in planar DBR-resonators. As a consequence of the experiments site-controlled InP/GaInP quantum dots embedded in a Tamm-plasmon structure can be considered as a promising base for the realization of highly efficient single photon sources.
6

Konzepte zur skalierbaren Realisierung von effizienten, halbleiterbasierten Einzelphotonenquellen / Concepts for the scalable realization of efficient semiconductor single photon sources

Schneider, Christian January 2011 (has links) (PDF)
Dem Einsatz niederdimensionaler Nanostrukturen als optisch aktives Medium wird enormes Potential vorausgesagt sowohl in den klassischen optoelektronischen Bauteilen (wie z.B. Halbleiterlasern) als auch in optischen Bauteilen der näachsten Generation (z.B. Einzelphotonenquellen oder Quellen verschränkter Photonenpaare). Dennoch konnten sich quantenpunktbasierte Halbleiterlaser, abgesehen von einigen wenigen Ausnahmen (QDLaser inc.), im industriellen Maßstab bisher nicht gegen Bauelemente mit höherdimensionalen Quantenfilmen als optisch aktivem Element durchsetzen. Deshalb scheint der Einsatz von Quantenpunkten (QPen) in nichtklassischen Lichtquellen gegenwärtig vielversprechender. Um jedoch solche Bauteile bis zur letztendlichen Marktreife zu bringen, müssen neben der starken Unterdrückung von Multiphotonenemission noch wesentliche Grundvoraussetzungen erfüllt werden: In dieser Arbeit wurden grundlegende Studien durchgeführt, welche insbesondere dem Fortschritt und den Problemen der Effizienz, des elektrischen Betriebs und der Skalierbaren Herstellung der Photonenqullen dienen sollte. Zum Einen wurden hierfür elektrisch betriebene Einzelphotonenquellen basierend auf gekoppelten QP-Mikroresonatoren realisiert und de ren Bauteileffizienz gezielt optimiert, wobei konventionelle selbstorganisierte InAs-QPe als aktives Medium eingesetzt wurden. Für die skalierbare Integration einzelner QPe in Mikroresonatoren wurde des Weiteren das gesteuerte QP-Wachstum auf vorstrukturierten Substraten optimiert und auf diese Art ortskontrollierte QPe in Bauteile integriert. Für die Realisierung hocheffizienter, elektrisch gepumpter inzelphotonenquellen wurde zunächst das Wachstum von binären InAs-QPen im Stranski-Krastanov-Modus optimiert und deren optische Eigenschaften im Detail untersucht. Durch das Einbringen einer Schicht von Siliziumatomen nahe der QP-Schicht konnten die Emitter negativ geladen werden und der helle Trionenzustand der QPe als energetischer Eigenzustand des Systems zur effizienten Extraktion einzelner Photonen ausgenutzt werden. Durch die Integration dieser geladenen QPe in elektrisch kontaktierte, auf Braggspiegel basierte Mikrotürmchen konnten Einzelphotonenquellen realisiert werden, in denen gezielt Licht-Materie- Wechselwirkungseffekte zur Steigerung der Bauteileffizienz ausgenutzt wurden. Basierend auf theoretischen Überlegungen wurde die Schichtstruktur soweit optimiert, dass letztendlich experimentell eine elektrisch gepumpte Einzelphotonenquelle mit einer Photonenemissionsrate von 47 MHz sowie einer zuvor unerreichten Bauteileffizienz von 34 % im Regime der schwachen Licht-Materie-Kopplung demonstriert werden konnte. Da Effekte der Licht-Materie-Wechselwirkung zwischen QP und Resonator neben der spektralen Resonanz ebenfalls von der relativen Position von Resonator und QP zueinander abhängen, ist eine Kombination von positionierten QPen und Bauteilausrichtung nahezu unumg¨anglich für die skalierbare, deterministische Herstellung von Systemen aus perfekt angeordnetem Emitter und Resonator. Deshalb wurden bestehende Konzepte zum geordneten Wachstum von QPen weiterentwickelt: Hierbei wurde geordnetes InAs-QP-Wachstum mit Perioden realisiert, die vergleichbare Abmessungen wie optische Resonatoren aufweisen, also Nukleationsperioden zwischen 500 nm und 4 μm. Durch ein genaues Anpassen der Wachstums- und Prozessbedingungen konnte des Weiteren die Bildung von QP-Molekülen auf den Nukleationsplätzen nahezu unterdrückt beziehungsweise gesteuert werden. Durch eine systematische Optimierung der optischen Eigenschaften der QPe konnten Emitter mit Einzelquantenpunktlinienbreiten um 100 μeV realisiert werden, was eine Grundvoraussetzung zur Studie ausgeprägter Licht-Materie-Wechselwirkungseffekte in Mikroresonatoren darstellt. Letztendlich konnten durch die Integration derartiger QPe in optisch sowie elektrisch betriebene Mikroresonatoren erstmals Bauteile realisiert werden, welche einige der prinzipiellen, an eine Einzelphotonenquelle gestellten Anforderungen erfüllen. Insbesondere konnten deutliche Signaturen der schwachen Licht-Materie-Kopplung einzelner positionierter QPe in photonische Kristallresonatoren, Mikroscheibenresonatoren sowie Mikrotürmchenresonatoren festgestellt werden. Darüberhinaus konnte an einem spektral resonanten System aus einem positionierten QP und der Grundmode eines Mikrotürmchenresonators eindeutig Einzelphotonenemission unter optischer Anregung demonstriert werden. Ebenfalls konnten Mikrotürmchenresonatoren mit integrierten positionierten QPen erstmals elektrisch betrieben werden und somit die Grundvoraussetzung für eine der skalierbaren Herstellung effizienter Einzelphotonenquellen geschaffen werden. / Employing low dimensional nanostructures as active medium in classical optoelectronic devices (for instance semiconductor laser diodes) as well as optical devices of the next generation (such as single photon sources or sources of entangled photon pairs promises enormous potential. Yet, despite some exceptions (for example QDLasers inc.), quantum dot (QD)-based semiconductor lasers can hardly compete with devices exploiting higher dimensional gain material so far. Hence, using QDs as single photon emitters seems very promising. In order to achieve compatibility on the market, some urgent pre-requisites still need to be met in such devices besides the surpression of multiphoton emission: • Efficiency: Only a highly efficient single photon source can be reasonably employed in applications. • Electrical operation: In order to achieve a high integration density and for reasons of user friendlyness, the device needs to be driven electrically. • Scalability: The scalable fabrication of single photon sources is pre-requisite and one of the greatest technological challenges. • Temperature: Eventually, single photon sources will only be established in the wide field of secure data transmission if their operation at room temperature can be assured. In this work, basic studies were carried out especially devoted to the progress in the first three challenges. On the one hand, electrically driven single photon sources based on coupled QD-microcavities were realized and optimized by employing conventional self organized InAs QDs as active material. On the other hand, in order to facilitate a scalable integration of single QDs into microcavities, directed QD nucleation on pre-patterned substrate was optimized. These site-controlled QDs were at last integrated into resonator devices. In order to realize highly efficient, electrically driven single photon sources, at first the growth of binary Stranski-Krastanov InAs QDs was optimized and their emission properties were investigated in detail. By introducing Silicon atoms in the vicinity of the QD-layer, the emitters could be negatively charged. The resulting bright trion state of the QDs can subsequently be exploited as the energetic eigenstate of the system for the extraction of single photons. By integrating these charged QDs in contacted, Bragg-reflector based micropillars, single photon sources were realized exploiting light-matter coupling to enhance the device’s efficiency. Based on theoretical considerations, the grown layer sequence was optimized to an extent that eventually an electrically driven single photon source with an emission rate of 47 MHz and an unprecedented device efficiency of 34 % in the weak coupling regime could be demonstrated. Since the effects of light-matter coupling between QD and resonator rely on the QD’s position in the device, a combination of site-controlled QD-growth and device alignment is almost inevitable for a scalable, deterministic fabrication of perfectly aligned emittercavity systems. Therefore, existing concepts for ordered QD-growth were adapted and improved [KH07]: Ordered QD-growth on periods comparable to dimensions of optical resonators between 500 nm und 4 μm was realized. By carefully adjusting the growth and process conditions, formation of QD-molecules on nucleation sites could be controlled and supressed almost entirely. Carrying out a systematic optimization of the QD’s optical properties, emitters with single QD-linewidth around 100 μeV were realized. This is pre-requsite for the study of pronounced light-matter interaction in microcavities. Finally, the integration of such QDs in optically and electrically driven microresonators resulted in devices demonstrating some of the fundamental properties requested from a single photon source. Pronounced signatures of the weak light-matter coupling between a site-controlled QD in a photonic crystal cavity, a microdisk cavity and micropillar cavities were observed. Furthermore, single photon emission of a spectrally resonant system of sitecontrolled QD and micropillar cavity under pulsed optical excitation was unambigiously demonstrated. Beyond this, micropillar cavities with site-controlled QDs were electrically driven for the first time, which is pre-requisite for the scalable fabrication of efficient single photon sources.
7

Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis / Photoluminescence Spectroscopy on low-dimensional III-V Semiconductor Structures

Münch, Steffen January 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zunächst im ersten Teil selbst-organisiert gewachsene Nanodrähte aus InP und GaN bezüglich ihrer Oberflächen- und Kristallqualität charakterisiert. Dies ist besonders im Hinblick auf zukünftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberflächen-Untersuchungen an Halbleiter-Nanodrähten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodrähten mittels zeitintegrierter und zeitaufgelöster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive für die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodrähten besteht darüber hinaus konkret noch die Möglichkeit, über ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalitäten einzubauen. Auf Grund ihres großen Oberfläche-zu-Volumen Verhältnisses sind die elektronischen und optischen Eigenschaften der Nanodrähte extrem oberflächensensitiv, was vor allem im Hinblick auf zukünftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur näheren Untersuchung der Oberflächeneigenschaften von Nanodrähten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufwändige Probenpräparation schnell nützliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden können. Quantenoptik an Halbleiter-Mikrokavitäten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf mögliche zukünftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-Türmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgelöster Mikro-PL-Spektroskopie in einem äußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zunächst wurden InxGa(1−x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30%, 45% und 60%) magneto-optisch untersucht. Aufgrund der größeren Abmessungen weisen die Quantenpunkte mit 30% In-Anteil auch hohe Oszillatorstärken auf, was sie besonders für Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der Möglichkeit, das Resonanzverhalten über das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsstärke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorstärke im Magnetfeld zurückgeführt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschnürung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorstärke erlaubt eine in situ Variation der Kopplungsstärke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabhängigen photonischen Moden über den Spinzustand eines Exzitons dar. / This thesis deals with optical investigations on low-dimensional III/V-semiconductor structures. In the first part self-organized nanowires made of InP and GaN are characterized for their surface and crystal quality, which is of special interest with respect to future opto- and nanoelectronic devices. The second part is dedicated to the more basic research topic of Quantum Optics. It presents magneto-optical studies on the light-matter interaction in quantum dot microresonator systems within the regime of strong coupling. Surface investigations on semiconductor nanowires This aspect of the present work focuses on investigations of semiconductor nanowires by means of time-integrated and time-resolved photoluminescence (PL) spectroscopy. These one-dimensional nanostructures provide a promising perspective for the further miniaturization of microelectronics. Since conventional structuring techniques increasingly face physical and technological boundaries, self-organized growth processes are of special interest in this context. Moreover, nanowires offer the possibility to implement complex functionalities already during their fabrication by means of controlled growth of axial and radial heterostructures. Due to their high surface-to-volume ratio the electronic and optical properties of nanowires are extremely sensitive to the surface conditions, which is of essential relevance for future applications in the range of micro- and optoelectronics as well as sensor technology. For a detailed investigation of the surface properties of nanowires optical spectroscopy is especially suitable, because as a non-invasive measurement method it quickly provides useful information without the necessity of an eloborate sample preparation. This information can, for instance, be adopted for the optimization of the fabrication process. Quantum Optics in semiconductor microcavities The second part of this thesis addresses the light-matter interaction in quantum dot-microresonator systems. Here, the regime of strong coupling between emitter and resonator is of special interest, also with respect to potential future applications in the field of quantum information processing. These microresonator-pillars based on planar AlAs/GaAs microresonators with InGaAs quantum dots in the active layer have been investigated by means of time-integrated and time-resolved micro-PL-spectroscopy in an external magnetic field in Faraday configuration. Basic investigations of quantum dots in magnetic fields In the first place, InxGa(1−x)As quantum dots with different In-content (x = 30%, 45% and 60%) have been investigated magneto-optically. Due to their bigger dimensions these quantum dots with 30% In-content exhibit higher oscillator strengths which makes them especially suitable for experiments on strong coupling. The influence of the magnetic field showed a direct relation between the lateral extension of the quantum dots and their diamagnetic shift. Strong coupling in magnetic fields Besides the possibility of tuning the system in resonance by the external magnetic field, a correlation between the coupling strength and the magnetic field was discovered which could be ascribed to a reduction of the oscillator strength in the magnetic field. This in turn is based on a squeeze of the exciton’s wavefunction by the applied field. This direct influence of the magnetic field on the oscillator strength allows for an in situ control of the coupling strength. Photon-photon interaction under strong coupling in magnetic fields After the demonstration of strong coupling between degenerate exciton and resonator modes in magnetic fields, spin-related coupling effects within the regime of strong coupling have been investigated. Two regions of interaction between the individual components of the resonator and exciton mode developed in the magnetic field under variation of the temperature. Here, an observed indirect interaction between both photonic modes at the moment of resonance is of special interest, because it is mediated by the excitonic mode. This so-called spinmediated photon-photon coupling represents a link between technically independent photonic modes via the spin state of an exciton.
8

Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen / Quantum dot based single photon sources and light-matter-interfaces

Maier, Sebastian January 2017 (has links) (PDF)
Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern. In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden. / Quantum information technology is in the focus of worldwide intensive research, because of its promising solutions for current global problems. With tap-proofed communication protocols, the field of quantum key distribution (QKD) could revolutionize the broadcast of sensitive data and would be also available for large distance communication with the realization of quantum repeater systems. Quantum computing could be used to dramatically fasten the solution of difficult and complex mathematical problems. A critical building block of solid state based quantum information processing (QIP) is the allocation of semiconductor samples, which on the one side provide the desired quantum mechanical features and on the other side satisfy the requirements of the complex non-demolition measurement techniques. Semiconductor quantum dots are very promising candidates in solid state based approaches as they act like artificial atoms manifesting in discrete emission lines. They are excellent emitters of single and indistinguishable photons. Moreover they can save quantum information in stationary quantum bits (qubits) as electron spins and emit flying photonic qubits to entangle remote qubits via spin-photon entanglement. The fabrication and characterization of quantum dot based semiconductor samples, which serve as a basic building block for experiments in the field of QIP with pre-defined physical features, are in focus of the present thesis. The basic material system consists of In(Ga)As quantum dots on GaAs substrates. The growth of quantum dot based semiconductor samples via molecular beam epitaxy offers highest crystal quality and the possibility to integrate the quantum emitters in photonic resonators, which improve the light outcoupling efficiency and enhance the emission by light-matter-coupling effects. Against this background this thesis focusses on the preparation and characterization of different In(Ga)As based quantum dot samples. Morphologic properties were characterized via scannnig electron microscopy or atomic force microscopy. The characterization of optical properties was performed by spectroscopy of the reflectance, photoluminescence and resonance fluorescence signal as well as measurements of the second order correlation function. The main part is divided in three chapters which are briefly summarized below. Quasi-planar single photon source with high extraction efficiency: Planar quantum dot based highly efficient single photon sources are of great importance, as quantum dot electron and hole spins turned out to be promising candidates for spin manipulation experiments. To be able to intialize, manipulate and measure single electron spins, the quantum dots have to be charged with a single electron and build up a λ-system in a magnetic field in Voigt geometry. It is important that on the one side the spin configuration is stable, comprising a long spin coherence time and on the other side that the photon outcoupling efficiency is high enough for measurements. Quantum dots in planar microcavities have large spin coherence times but rather weak outcoupling efficiencies compared to micro- or nanopillar resonators. In this chapter a quasi-planar quantum dot based source for single (g(2)(0)=0,023) and indistinguishable photons (g(2)indist (0)=0,17) with a high purity is presented. This planar asymmetric microcavity doesn`t have any open surfaces in close proximity to the active layer, so that the spin dephasing is minimalized. The optical quality of the quantum dots is very high with emission linewidths near the natural linewidth of a quantum dot. Additionally the single photon source shows a high outcoupling efficiency of 42% which exceeds the outcoupling of a regular planar resonator (33%). This high extraction efficiency can be attributed to the coupling of the photon emission to Gallium-induced, Gaussian-shaped nanohill defects. Morphologic investigations and simulations show, that these defect cavity structures serve as nucleation centers during quantum dot growth and increase the outcoupling efficiency by lensing effects. In further experiments on this specific sample, entanglement of an electron spin and a photon was demonstrated, which is a critical building block for semiconductor based quantum repeaters. In this context also the full tomography of a polarization-entangled spin-photon-pair was measured with a surprisingly high fidelity. Moreover two photon interference and indistinguishability of two photons from remote quantum dots of this wafer was measured, which also constitutes a critical building block for quantum repeaters. Coupled quantum well - quantum dot system: Further challenges for optical controlled spin-qubit systems are fast readout of the quantum information with high fidelity and the implementation of a scalable one- and two-qubit gate. Therefore a proposal was adapted which is based on the coupling of an electron spin in a quantum dot to a gas of exciton-polaritons, formed in a quantum well in close proximity of the quantum dot. In cooperation with Yoshihisa Yamamoto's group from the Stanford University, a sample structure was designed and technologically realized as part of this thesis, to study the fundamental physical properties of this coupled system. By systematic epitactical improvement, a coupled quantum well-quantum dot system could successfully be implemented in a microresonator. The exciton-polariton gas was realized in a quantum well which is strongly coupled to a microcavity with a Rabi splitting of VR=2,5 meV. Although the distance to the quantum well is only a few nm, charged quantum dots with high optical quality and clear single photon emission character (g(2)(0)=0,24) could be measured. Site-controlled quantum dots: A scalable technological platform for bright sources of quantum light is highly desirable. Site-controlled quantum dots with high optical quality are very promising candidates to realize such a system. This concept offers the possibility to integrate single quantum dots in devices in a deterministic and scalable way and furthermore provides sample structures with a regular two dimensional array of site-controlled quantum dots to realize concepts for optically controlled two-qubits gates. The method to position the quantum dots used in this thesis is based on etched nanoholes in pre-patterned substrates, which serve as nucleation centers during the quantum dot growth process. An optimized layer structure and an increased light outcoupling efficiency using a dielectric mirror allowed the first measurement of resonance fluorescence on site-controlled quantum dots. In a further optimized design, emission of positioned quantum dots at 1,3 μm telecommunication wavelength was demonstrated for the first time for InGaAs quantum dots on GaAs substrates.
9

Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen für AlGaAs Mikroresonatoren / Molecular beam epitaxy of GaInAs(N) low dimensional Systems for AlGaAs micro resonators

Strauß, Micha Johannes January 2018 (has links) (PDF)
Die Erforschung von Quantenpunkten mit ihren quantisierten, atomähnlichen Zuständen, bietet eine Vielzahl von Möglichkeiten auf dem Weg zum Quantencomputer und für Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden können. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass Güten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und Türmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor für diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatortürmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der Türmchen. Darüber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatortürmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es möglich sein, ein Resonatortürmchen direkt über dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung für die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der Hälfte des angestrebten Türmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel über den Quantenpunkten, Resonatortürmchen zielgenau auf die Quantenpunkte prozessiert werden können. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. Für ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe möglichst defektfrei überwachsen werden konnte, die Struktur des Lochgitters aber nicht zerstört wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum nächsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung für eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 % der Quantenpunkte innerhalb von 50 nm und 60 % innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte Möglichkeit, diese in Halbleiterresonatoren einbinden zu können, machen sie auch interessant für die Anwendung im Telekommunikationsbereich. Um für Glasfasernetze Anwendung zu finden, muss jedoch die Wellenlänge auf den Bereich von 1300 nm oder 1550 nm übertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenlänge von 1300nm. Eine fu ̈r andere Bauteile sowie für Laserdioden bereits häufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von über 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenlängen größer 1300 nm emittieren. So ist es nun möglich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenlänge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen für 1300nm zu realisieren. / The research of quantum dots with their quantized, atom-like states provides many possibilities for quantum computing and for application in technologies like single photon sources and quantum dot lazers. Previous studies have demonstrated how quantum dots can be integrated with and linked to semiconductor resonator. For this reason, it is necessary to better understand and optimize the epitaxial growth of quantum dots. Within the context of this work, the Bragg-Resonators must be optimized so that Q factors of up to 165.000 can be realized. Extensive studies of these samplings indicate a complex dependency between Q factors and diameter of the micropillar. This is how a quasi-periodic Q factor oscillation looks. One factor for these oscillations is the composition of the side flanks of the resonator micropillars, caused by the various properties of AIAs and GaAs during processing the micropillar. In addition, both optically and electrically pumped single photon sources have been realized on the basis of this structure. Due to the fact that the position of the quantum dot within the resonator micropillar has a significant effect on the efficiency of the coupling between the resonator and the quantum dot, a further goal was to control the position of the quantum dot. With a precise positioning, it should be possible to place a micropillar directly over a quantum dot, thus the quantum dot is located in the center of the pillar mode. A particular challenge in the scope of work was to position the quantum dots with a distance of at least half of the target micropillar diameter,in other words, between 0,5μm and 2μm. The positioning must be done in such a way so that a AIAs/GaAs DBR micropillar can be processed over the quantum dot. Therefore processes were developed to place a lattice of holes on an MBE grown sample via Electron Beam Lithography. The lithographical process was optimized by additional steps of wet chemical cleaning, and cleaning with hydrogen under ultra high vacuum, to avoid defects during MBE overgrowth. InAs quantum dots have positions on a given structure in a distance of several micrometers to each other. It could be proved by processing gold pattern, that 30% of the quantum dots are placed within 50 nm precision and 60% within 100 nm . In the following work quantum dots have been placed in DBR micro pillars and photonic crystals. Because quantum dots have a wide spectral range and because they can be integrated in micropillars, they are also of interest for applications within telecommunication systems. Therefore the spectral range around 1300 nm and 1550 nm has to be re- ached to link them to fiber cable. Former studies have shown results tight under 1300nm. Nitrogen is an additional way to get InAs quantum emitting at 1300nm at 8 K. Until now research for InAs quantum dots containing nitrogen was focused on high density dots for laser application. The Dot- In-A-Well design was transferred, in this work, to this problem by using nitrogen in a well above the quantum dots. With this development, single quantum dots, emitting above 1300nm at 8 K, have been grown for the first time. The next step would be to integrated this InAs Quantum dots with the nitrogen well, within the micro pillar to achieve single photon sources at 1300nm.
10

Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen / Electric and magnetic fields for analysis and manipulation of exciton-polaritons

Brodbeck, Sebastian January 2020 (has links) (PDF)
Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren führt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen können zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgelöst wird. Durch den direkten Zugang zu Polariton-Zuständen in spektroskopischen Experimenten, sowie durch die Möglichkeit mit vielfältigen Mitteln nahezu beliebige Potentiallandschaften definieren zu können, eröffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder können Erkenntnisse über Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zugänglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin können die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was für die Erzeugung dynamischer Potentiale relevant werden könnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Phänomene der Licht-Materie-Wechselwirkung unter dem Einfluss äußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu können, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfläche und -rückseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrotürmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungsträger, wie er im Mikrotürmchen erzielt wird, zu einer Umkehrung der Energieverschiebung führt. Während in dieser Geometrie mit zunehmender Feldstärke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erklärt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden Fällen können, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute Übereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden können. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldstärken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen Ätzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdrückt werden, wobei sich die Feldabhängigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren lässt. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungsträger ist. Dadurch lässt sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben häufig beobachtet werden, auf grundsätzlich verschiedene Verstärkungsmechanismen zurückgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabhängigen Photostroms beobachtet, da dort freie Ladungsträger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle für Polariton- und Photon-Laser lässt sich der ermittelte Verlauf der Ladungsträgerdichte über den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton für zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsstärke werden die Hybridmoden in guter Näherung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. Für den Resonator mit großer Kopplungsstärke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Größenordnung über der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 übersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich größer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszuständen des Quantenfilms erklären lässt. / Strong light-matter interaction in semiconductor microcavities leads to the formation of eigenmodes with mixed light-matter characteristics, so-called polaritons. The unique properties of these bosonic quasiparticles may be exploited to realize novel devices, such as polariton-lasers which rely on stimulated scattering instead of stimulated emission, which in turn triggers photon-lasing. Polariton states are directly accessible in spectroscopic experiments and can be subjected to almost arbitrary potential landscapes which could lead to numerous applications, for instance in quantum simulation or emulation. External electric and magnetic fields can be used to gain insights into polaritons that are not available in all-optical experiments. The matter part of the hybrid modes is accessed by the external fields that do not interact with purely photonic modes. Furthermore, in-situ manipulation of the polariton energy by external fields could be used to create dynamic potentials. This thesis is therefore focussed on studying different aspects of light-matter coupling under the influence of external fields. To this end, structures and devices tailored to the specific experiments were fabricated and investigated in electro-optical or magneto-optical measurements. Doped microcavities with electrical contacts on the sample surface and back side were used to apply electric fields along the growth direction, i.e. in vertical geometry. The energy shift in an electric field, the so-called Stark effect, was investigated in these devices. In this work, measurements of the polariton Stark effect, which has previously been demonstrated in the linear regime, were systematically extended to the nonlinear regime of polariton-lasing with special attention paid to the sample geometry and its influence on the observable energy shifts. Investigations of samples with planar, semi-planar and micropillar geometries show that lateral carrier confinement in a micropillar leads to an inversion of the energy shift. While in this geometry a blueshift with increasing field strength is measured, which can be explained by screening effects, the expected redshift is restored in planar and semi-planar geometries. In both cases, detuning-dependent energy shifts of up to hundreds of µeV are observed in good agreement with values calculated with a model of coupled harmonic oscillators. Furthermore, comparable shifts below and above the polariton-lasing threshold are observed both in the semi-planar and in the micropillar geometry. The polariton Stark effect may therefore be considered as criterion to unambiguously distinguish optically excited polariton- and photon-lasers. If the electric field is not oriented along the growth direction but perpendicular to it, i.e. in the plane of the quantum wells, then field ionization of electron-hole pairs occurs already at low field strengths. To realize this field geometry, a process was developed to deposit electrical contacts directly onto the quantum wells of an undoped microcavity which are partially exposed in an etching step. The polariton emission can be suppressed by applying voltage to the lateral contacts and the dependency of the polariton occupation upon the electric field is reproduced using a set of coupled rate equations. This novel contacting technique furthermore allows to measure the photocurrent in the quantum wells which is proportional to the free carrier density. The two thresholds of nonlinear emission, which are commonly observed in similar samples, can then be shown to rely on fundamentally different gain mechanisms. A kink in the power dependence of the photocurrent is observed at the second threshold, where free carriers act as reservoir for photon-lasing which is why their density is partially clamped at threshold. The first threshold on the other hand, which is attributed to polariton-lasing, has no influence on the linear increase of the photocurrent with increasing excitation power, since there bound electron-hole pairs act as reservoir. The experimentally determined power dependence of the photocurrent is reproduced qualitatively over the whole range of excitation powers using adapted rate equation models for polariton- and photon-lasers. Finally, a magnetic field is used to reveal the impact of light-matter interactions on electron-hole coupling in the regime of very strong coupling. By measuring the diamagnetic shift, the average electron-hole separations of lower and upper polariton are determined for two microcavities with different light-matter coupling strengths. At small coupling strength, describing the hybrid modes as linear combinations of uncoupled light and matter modes is a valid approximation. At large coupling strength, significant asymmetries between lower and upper polariton are observed. With increasing detuning, the upper polariton diamagnetic shift increases up to 2.1 meV, almost an order of magnitude larger than the lower polariton shift (0.27 meV) at the same detuning and more than twice as large as the bare quantum well diamagnetic shift. Thus, the lower polariton is described by a wavefunction with a matter part exhibiting a decreased average electron-hole separation. For the upper polariton, this average radius is much larger than that of an electron-hole pair in the uncoupled quantum well which can be explained by photon-mediated interactions with excited and continuum states of the quantum well.

Page generated in 0.0755 seconds