• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detaillierte molekulare Simulationen und Parameterstudie für ein ternäres Gemisch zur Weiterentwicklung des GEQUAC-Modells /

Pielen, Georg. January 2005 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2005.
2

Characterization and quantification of crystalline and amorphous phase assemblage in ternary binders during hydration

Qoku, Elsa 21 August 2019 (has links)
This dissertation aims to provide a comprehensive understanding of the evolution of solid phase composition with ongoing hydration in OPC‒rich and CAC‒CsHx rich ternary binders. The work is based on a multi‒method approach including XRD, TGA, MAS NMR spectroscopy, calorimetry, microscopy and thermodynamic calculations. From the combinations of results obtained from the different analytical methods, a schematic representation of the phase evolution with ongoing hydration in OPC and CAC‒CsHx rich combinations was achieved, along with plots showing the distributing hydrate phases in the ternary diagram OPC‒CAC‒CsHx. C‒S‒H, portlandite, ettringite and AFm phases stand as main hydration products in the OPC‒rich combinations. C‒S‒H accounts for ~70% of the X‒ray amorphous fraction. In the CAC‒CsHx rich combinations ettringite along with AH3, monosulphoaluminate, strätlingite and hydrogranet phases precipitate. The high portions of X‒ray amorphous fractions in such combinations were mainly attributed to AH3 gel and AFm phases. Additionally, comparison of QXRD results with stoichiometric calculations, thermal analysis and 27Al NMR revealed that a portion of the formed ettringite and portlandite are in an X‒ray amorphous state during hydration. The variation of CAC type and water content strongly influences the hydration mechanism and phase assemblage in the ternary binders, whereas differences in mixtures with different sulphate sources are mainly related to the different dissolution kinetics of the sulphate.

Page generated in 0.0581 seconds