• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical microsystem based on integration of resonant microsensor and CMOS ASIC

Demirci, Kemal Safak 06 July 2010 (has links)
The main topic of this thesis is the development of a chemical microsystem based on integration of a silicon-based resonant microsensor and a CMOS ASIC for portable sensing applications. Cantilever and disk-shape microresonators have been used as mass-sensitive sensors. Based on the characteristics of the microresonators, CMOS integrated interface and control electronics have been implemented. The CMOS ASIC utilizes the self-oscillation method, which incorporates the microresonator in an amplifying feedback loop as the frequency determining element. In this manner, the ASIC includes a main feedback loop to sustain oscillation at or close to the fundamental resonance frequency of the microresonator. For stable oscillation, an automatic gain control loop regulates the oscillation amplitude by controlling the gain of the main feedback loop. In addition, an automatic phase control loop has been included to adjust the phase of the main feedback loop to ensure an operating point as close as possible to the resonance frequency, resulting in improved frequency stability. The CMOS chip has been interfaced to cantilever and disk-shape microresonators and short-term frequency stabilities as low as 3.4×10-8 in air have been obtained with a 1 sec gate time. The performance of the implemented microsystem as a chemical sensor has been evaluated experimentally with microresonators coated with chemically sensitive polymer films. With a gas-phase chemical measurement setup constructed in this work, chemical measurements have been performed and different concentrations of VOCs, such as benzene, toluene and m-xylene have been detected with limits of detection of 5.3 ppm, 1.2 ppm and 0.35 ppm, respectively. To improve the long-term stability in monitoring applications with slowly changing analyte signatures, a method to compensate for frequency drift caused by environmental disturbances has been implemented on the CMOS chip. This method uses a controlled stiffness modulation generated by a frequency drift compensation circuit to track the changes in the resonator's Q-factor in response to variations in the environmental conditions. The measured Q-factor is then used to compensate for the frequency drift using an initial calibration step. The feasibility of the proposed method has been verified experimentally by compensating for temperature-induced frequency drift during gas-phase chemical measurements.
2

Next-Generation Perturbed Angular Correlation Spectroscopy

Nagl, Matthias 13 May 2014 (has links)
No description available.
3

Performance Monitoring and Control in Wireless Sensor Networks

Orhan, Ibrahim January 2012 (has links)
Wireless personal area networks have emerged as an important communication infrastructure in areas such as at-home healthcare and home automation, independent living and assistive technology, as well as sports and wellness. Wireless personal area networks, including body sensor networks, are becoming more mature and are considered to be a realistic alternative as communication infrastructure for demanding services. However, to transmit data from e.g., an ECG in wireless networks is also a challenge, especially if multiple sensors compete for access. Contention-based networks offer simplicity and utilization advantages, but the drawback is lack of predictable performance. Recipients of data sent in wireless sensor networks need to know whether they can trust the information or not. Performance measurements, monitoring and control is of crucial importance for medical and healthcare applications in wireless sensor networks. This thesis focuses on development, prototype implementation and evaluation of a performance management system with performance and admission control for wireless sensor networks. Furthermore, an implementation of a new method to compensate for clock drift between multiple wireless sensor nodes is also shown. Errors in time synchronization between nodes in Bluetooth networks, resulting in inadequate data fusion, are also analysed. / <p>QC 20120529</p>
4

Improving the shutter-less compensation method for TEC-less microbolometer-based infrared cameras

Tempelhahn, A., Budzier, H., Krause, V., Gerlach, G. 29 August 2019 (has links)
Shutter-less infrared cameras based on microbolometer focal plane arrays (FPAs) are the most widely used cameras in thermography, in particular in the fields of handheld devices and small distributed sensors. For acceptable measurement uncertainty values the disturbing influences of changing thermal ambient conditions have to be treated corresponding to temperature measurements of the thermal conditions inside the camera. We propose a compensation approach based on calibration measurements where changing external conditions are simulated and all correction parameters are determined. This allows to process the raw infrared data and to consider all disturbing influences. The effects on the pixel responsivity and offset voltage are considered separately. The responsivity correction requires two different, alternating radiation sources. This paper presents the details of the compensation procedure and discusses relevant aspects to gain low temperature measurement uncertainty.

Page generated in 0.0959 seconds