Spelling suggestions: "subject:"drilled shafts"" "subject:"grilled shafts""
1 |
Development of Design and Analysis Method for Slope Stabilization Using Drilled ShaftsAl Bodour, Wassel 21 May 2010 (has links)
No description available.
|
2 |
Use of Ultimate Load Theories for Design of Drilled Shaft Sound Wall FoundationsHelmers, Matthew J. 29 August 1997 (has links)
A study was performed to investigate the factors that affect the accuracy of the procedures used by the Virginia Department of Transportation for design of drilled shaft sound wall foundations. Field load tests were performed on eight inch and nine inch diameter drilled shafts, and the results were compared to theoretical solutions for ultimate lateral load capacity. Standard Penetration Tests were run in the field and laboratory strength tests were performed on the soils from the test sites. It was found that published correlations between blow count and friction angle for sands and gravels can be used to estimate friction angles for the partly saturated silty and clayey soils encountered at the test sites. A spreadsheet program was developed to automate the process of determining design lengths for drilled shaft sound wall foundations. The spreadsheet was used to investigate the effects of different analysis procedures and parameter values on the design lengths of drilled shaft sound wall foundation. / Master of Science
|
3 |
Full-Scale-Lateral-Load Test of a 1.2 m Diameter Drilled Shaft in SandMcCall, Amy Jean Taylor 25 March 2006 (has links)
The soil-structure interaction models associated with laterally loaded deep foundations have typically been based on load tests involving relatively small diameter foundations. The lateral soil resistance for larger diameter foundations has been assumed to increase linearly with diameter; however, few, if any load tests have been performed to confirm this relationship. To better understand the lateral resistance of large diameter deep foundations in sand, a series of full scale, cyclic, lateral load tests were performed on two 1.2 m diameter drilled shafts and a 0.324 m diameter steel pipe pile in sand. Although the tests involve two different foundation types, the upper 2.4 m of the profile, which provides the majority of the lateral resistance, consists of sand compacted around both foundation types. Therefore, these test results make it possible to evaluate the effect of foundation diameter on lateral soil resistance. The drilled shafts were first loaded in one direction by reacting against a fifteen-pile group. Subsequently a load test was performed in the opposite direction by reacting against a 9-pile group. The soil profile below the 2.4 m-thick layer of compacted sand consisted of interbedded layers of sand and fine-grained soil. For the drilled shaft load tests, pile head deflection and applied load were measured by string potentiometers and load cells, respectively. Tilt was also measured as a function of depth with an inclinometer which was then used to calculate deflection and bending moment as a function of depth. For the pipe pile, deflection and applied load were also measured; however, bending moment was computed based on strain gauges readings along the length of the pile. The lateral response of the drilled shafts and pipe pile were modeled using the computer programs LPILE (Reese et al., 2000), SWM6.0 (Ashour et al., 2002), and FB-MultiPier Version 4.06 (Hoit et al., 2000). Comparisons were made between the measured and computed load-deflection curves as well as bending moment versus depth curves. Soil parameters in the computer programs were iteratively adjusted until a good match between measured and computed response of the 0.324 m pipe pile was obtained. This refined soil profile was then used to model the drilled shaft response. User-defined p-multipliers were selected to match the measured results with the calculated results. On average very good agreement was obtained between measured and computed response without resorting to p-multipliers greater than 1.0. These results suggest that a linear increase in lateral resistance with foundation diameter is appropriate. LPILE typically produced the best agreement with measured response although the other programs usually gave reasonable results as well. Cyclic loading generally reduced the lateral resistance of the drilled shafts and pile foundation by about 20%.
|
4 |
Full-Scale Testing of Blast-Induced Liquefaction Downdrag on Auger-Cast Piles in SandHollenbaugh, Joseph Erick 01 December 2014 (has links)
Deep foundations like auger-cast piles and drilled shafts frequently extend through liquefiable sand layers and bear on non-liquefiable layers at depth. When liquefaction occurs, the skin friction on the shaft decreases to zero, and then increases again as the pore water pressure dissipates and the layer begins to settle, or compact. As the effective stress increases and the liquefiable layer settles, along with the overlaying layers, negative skin from the soil acts on the shaft. To investigate the loss of skin friction and the development of negative skin friction, soil-induced load was measured in three instrumented, full-scale auger-cast piles after blast-induced liquefaction at a site near Christchurch, New Zealand. The test piles were installed to depths of 8.5 m, 12 m, and 14 m to investigate the influence of pile depth on response to liquefaction. The 8.5 m pile terminated within the liquefied layer while the 12 m and 14 m piles penetrated the liquefied sand and were supported on denser sands. Following the first blast, where no load was applied to the piles, liquefaction developed throughout a 9-m thick layer. As the liquefied sand reconsolidated, the sand settled about 30 mm (0.3% volumetric strain) while pile settlements were limited to a range of 14 to 21 mm (0.54 to 0.84 in). Because the ground settled relative to the piles, negative skin friction developed with a magnitude equal to about 50% of the positive skin friction measured in a static pile load test. Following the second blast, where significant load was applied to the piles, liquefaction developed throughout a 6-m thick layer. During reconsolidation, the liquefied sand settled a maximum of 80 mm (1.1% volumetric strain) while pile settlements ranged from 71 to 104 mm (2.8 to 4.1 in). The reduced side friction in the liquefied sand led to full mobilization of side friction and end-bearing resistance for all test piles below the liquefied layer and significant pile settlement. Because the piles generally settled relative to the surrounding ground, positive skin friction developed as the liquefied sand reconsolidated. Once again, skin friction during reconsolidation of the liquefied sand was equal to about 50% of the positive skin friction obtained from a static load test before liquefaction.
|
5 |
ANALYSIS OF THE EFFECTS OF HEAVILY LOADED MAT FOUNDATION ON ADJACENT DRILLED SHAFT FOUNDATIONJha, Pravin 01 December 2015 (has links)
Construction of heavily loaded shallow foundations adjacent to deep foundation is generally avoided in common geotechnical engineering practice to minimize additional loads on deep foundations. However, with the growing trend of urbanization leading to a demand of new construction, it is not always possible to avoid such situation where a heavily loaded shallow foundation will be right next to the infrastructure resting on deep foundations. When this situation cannot be avoided, influence of soil pressures and deformations in soil, created by shallow foundation on adjacent deep foundation, must be evaluated. The study of interaction between deep foundations has been carried out by several researchers in terms of pile-soil-pile interaction. Similarly, there are many published studies on interaction between closely spaced shallow foundations in terms of bearing capacity and settlement. However, not much published literature is available for practicing engineers to analyze and design deep and shallow foundations when they are constructed adjacent to each other. Construction of heavily loaded mat adjacent to drilled shafts would cause complex interaction between the foundations. However, lateral stress and drag forces on the shafts resulting from the heavy load on the mat foundation are the two major factors that would affect the design and performance of shafts. Since there is not much literature and guidance available to analyze and design such kind of situation, a preliminary investigation was first carried out where magnitude of the drag forces and lateral forces on drilled shafts were estimated using simple geotechnical engineering principles. The limitations of preliminary analysis led to the need of more sophisticated analysis using finite element techniques. As a part of this research, a detailed parametric study using finite element techniques has been performed to better understand stress and deformation distributions, and develop simplified methods to analyze this type of problems. A stress bulb for lateral stresses under a uniformly loaded square foundation, similar to the pressure bulb for vertical stresses which is widely used in the geotechnical engineering practice, has been proposed, which provides a significant tool for practicing engineers to understand lateral stress distribution below a uniformly loaded square area and estimate lateral stresses on nearby deep foundations. Similarly, a deformation bulb under a uniformly loaded square foundation is proposed. A new term “Isodefers” has been proposed to refer the lines of equal deformation. Isodefers are also a significant tool for practicing engineers to understand vertical deformation distribution below a uniformly loaded square area and estimate drag forces on nearby deep foundations. A case study emerging from similar real life scenario has also been analyzed and results are discussed with suitable recommendations.
|
6 |
Behavior of Semi-Integral Abutment Bridge with Turn-Back Wingwalls Supported on Drilled ShaftsAhmed, Safiya 23 May 2022 (has links)
No description available.
|
7 |
Integrity Testing of Drilled Shafts Using Thermal ProfilingKarch, Daniel E. 27 June 2018 (has links)
No description available.
|
8 |
Novel Application of Nondestructive Testing to Evaluate Anomalous Conditions in Drilled Shafts and the Geologic Materials Underlying Their ExcavationsKordjazi, Alireza January 2019 (has links)
Drilled shafts are deep foundation elements created by excavating cylindrical shafts into the ground and filling them with concrete. Given the types of structures they support, failure to meet their performance criteria can jeopardize public safety and cause severe financial losses. Consequently, quality control measures are warranted to ensure these foundations meet design specifications, particularly with respect to their structural integrity and geotechnical capacity. Due to their inaccessibility, non-destructive testing (NDT) techniques have received much attention for drilled shaft quality control. However, there are limitations in the NDT tools currently used for structural integrity testing. Moreover, there is no current NDT tool to evaluate conditions underlying drilled shaft excavations and aid in verifying geotechnical capacity. The main objective of this research is to examine the development of new NDT methodologies to address some of the limitations in the inspection of drilled shaft structural integrity and geotechnical conditions underlying their excavations. The use of stress waves in large laboratory models is first examined to evaluate the performance of ray-based techniques for detecting anomalies. The study then continues to investigate the improvements offered by using a full waveform inversion (FWI) approach to analyze the stress wave data. A hybrid, multi-scale FWI workflow is recommended to increase the chance of the convergence of the inversion algorithms. Additionally, the benefits of a multi-parameter FWI are discussed. Since FWI is computationally expensive, a sequential optimal experimental design (SOED) analysis is proposed to determine the optimal hardware configurations for each application. The resulting benefit-cost curves from this analysis allow for designing an NDT survey that matches the available resources for the project. / Civil Engineering
|
9 |
Resistance analysis of axially loaded drilled shafts socketed in shaleBurkett, Terry Bryce 05 November 2013 (has links)
An investigation into the load-settlement behavior of two drilled shafts, founded
in shale, is presented. The motivation for this research is to advance the understanding
on how drilled shafts react under loading in stiff clays and shales. The objectives of the
study are to measure the strengths within the subsurface material at the test site, estimate
the unit side shear and unit end bearing of the shale-shaft interaction by running two axial
load tests, and compare the results to the current design methods that are used to predict
the axial capacity of drilled shafts.
A comprehensive field investigation, performed by Fugro Consultants, provided
strength profiles of the subsurface material at the test site. Through the cooperation of
the Texas Department of Transportation (TxDOT), the Association of Drilled Shaft
Contractors, and McKinney Drilling Company, two drilled shafts were installed at a
highway construction site in Austin, Texas. The load tests were performed by Loadtest,
Inc.; using the patented Osterberg-Cell™ loading technique to axially displace the shafts.
Ensoft, Inc. installed strain gauges at multiple levels within the shafts, making it possible
to analyze the shaft mobilization during loading.
Ultimate end bearing values of about 100- and 120-ksf were measured for Test
Shafts #1 and #2, respectively. The current methods for estimating unit end bearing,
developed by TxDOT and the Federal Highway Administration, provide fairly accurate
predictions when compared to the measured information. The ultimate side resistance
obtained near the O-Cell™ in each test was about 20-ksf, however, the measured ultimate
side resistance steadily decreased nearing the tip of the shaft. For the zones where the
side resistance was believed to be fully mobilized, the TxDOT design method accurately
predicts the side resistance. A limited amount of information is currently available for
load tests performed in soils with TCP values harder than 2-in per 100 blows. Additional
load test information should allow for a stronger correlation between TCP tests and unit
resistances for very hard clay-shales, as well as, allowing for further evaluation of the
shale-shaft interaction near the shaft tip. The results presented herein demonstrate the
effectiveness of the current design methods for drilled shafts and the non-uniformity of
side resistance within one- to two-diameters of the shaft tip. / text
|
10 |
LANDSLIDE STABILIZATION USING A SINGLE ROW OF ROCK-SOCKETED DRILLED SHAFTS AND ANALYSIS OF LATERALLY LOADED DRILLED SHAFTS USING SHAFT DEFLECTION DATAYamin, Moh'd January 2007 (has links)
No description available.
|
Page generated in 0.0393 seconds