• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 508
  • 90
  • 62
  • 51
  • 41
  • 34
  • 13
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 1039
  • 1039
  • 181
  • 178
  • 178
  • 162
  • 98
  • 82
  • 81
  • 79
  • 73
  • 68
  • 65
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Presence of potentially pathogenic heterotrophic plate count (HPC) bacteria occurring in a drinking water distribution system in the North-West Province, South Africa / by Leandra Venter

Venter, Leandra January 2010 (has links)
There is currently growing concern about the presence of heterotrophic plate count (HPC) bacteria in drinking water. These HPC may have potential pathogenic features, enabling them to cause disease. It is especially alarming amongst individuals with a weakened immune system. South Africa, the country with the highest incidents of HIV positive individuals in the world, mainly uses these counts to assess the quality of drinking water in terms of the number of micro-organisms present in the water. These micro-organisms may be present in the bulk water or as biofilms adhered to the surfaces of a drinking water distribution system. The current study investigated the pathogenic potential of HPC bacteria occurring as biofilms within a drinking water distribution system and determined the possible presence of these micro-organims within the bulk water. Biofilm samples were taken from five sites within a drinking water distribution system. Fifty six bacterial colonies were selected based on morphotypes and isolated for the screening of potential pathogenic features. Haemolysin production was tested for using sheep-blood agar plates. Of the 56, 31 isolates were ?-haemolytic. Among the 31 ?-haemolytic positive isolates 87.1% were positive for lecithinase, 41.9% for proteinase, 19.4% for chondroitinase, 9.7% for DNase and 6.5% for hyaluronidase. All of the ?-haemolytic isolates were resistant to oxytetracycline 30 ?g, trimethoprim 2.5 ?g and penicillin G10 units, 96.8% were resistant to vancomycin 30 ?g and ampicillin 10 ?g, 93.5% to kanamycin 30 ?g, 74.2% to chloramphenicol 30 ?g, 54.8% to ciprofloxacin 5 ?g, 22.6% to streptomycin 300 ?g and 16.1% to erythromycin 15 ?g. Nineteen isolates producing two or more enzymes were subjected to Gram staining. The nineteen isolates were all Gram-positive. These isolates were then identified using the BD BBL CRYSTALTM Gram-positive (GP) identification (ID) system. Isolates were identified as Bacillus cereus, Bacillus licheniformis, Bacillus subtilis, Bacillus megaterium, Bacillus pumilus and Kocuria rosea. 16S rRNA gene sequencing was performed to confirm these results and to obtain identifications for the bacteria not identified with the BD BBL CRYSTALTM GP ID system. Additionally identified bacteria included Bacillus thuringiensis, Arthrobacter oxydans and Exiguobacterium acetylicum. Morphological properties of the different species were studied with transmission electron microscopy (TEM) to confirm sequencing results. All the isolates displayed rod shaped cells with the exception of Arthrobacter oxydans being spherical in the stationary phase of their life cycle. Bulk water samples were taken at two sites in close proximity with the biofilm sampling sites. The DNA was extracted directly from the water samples and the 16S rRNA gene region was amplified. Denaturing gradient gel electrophoresis (DGGE) was performed to confirm the presence of the isolates from the biofilm samples in the bulk water samples. The presence of Bacillus pumilus and Arthrobacter oxydans could be confirmed with DGGE. This study demonstrated the presence of potentially pathogenic HPC bacteria within biofilms in a drinking water distribution system. It also confirmed the probable presence of two of these biofilm based bacteria in the bulk water. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2010.
472

Presence of potentially pathogenic heterotrophic plate count (HPC) bacteria occurring in a drinking water distribution system in the North-West Province, South Africa / by Leandra Venter

Venter, Leandra January 2010 (has links)
There is currently growing concern about the presence of heterotrophic plate count (HPC) bacteria in drinking water. These HPC may have potential pathogenic features, enabling them to cause disease. It is especially alarming amongst individuals with a weakened immune system. South Africa, the country with the highest incidents of HIV positive individuals in the world, mainly uses these counts to assess the quality of drinking water in terms of the number of micro-organisms present in the water. These micro-organisms may be present in the bulk water or as biofilms adhered to the surfaces of a drinking water distribution system. The current study investigated the pathogenic potential of HPC bacteria occurring as biofilms within a drinking water distribution system and determined the possible presence of these micro-organims within the bulk water. Biofilm samples were taken from five sites within a drinking water distribution system. Fifty six bacterial colonies were selected based on morphotypes and isolated for the screening of potential pathogenic features. Haemolysin production was tested for using sheep-blood agar plates. Of the 56, 31 isolates were ?-haemolytic. Among the 31 ?-haemolytic positive isolates 87.1% were positive for lecithinase, 41.9% for proteinase, 19.4% for chondroitinase, 9.7% for DNase and 6.5% for hyaluronidase. All of the ?-haemolytic isolates were resistant to oxytetracycline 30 ?g, trimethoprim 2.5 ?g and penicillin G10 units, 96.8% were resistant to vancomycin 30 ?g and ampicillin 10 ?g, 93.5% to kanamycin 30 ?g, 74.2% to chloramphenicol 30 ?g, 54.8% to ciprofloxacin 5 ?g, 22.6% to streptomycin 300 ?g and 16.1% to erythromycin 15 ?g. Nineteen isolates producing two or more enzymes were subjected to Gram staining. The nineteen isolates were all Gram-positive. These isolates were then identified using the BD BBL CRYSTALTM Gram-positive (GP) identification (ID) system. Isolates were identified as Bacillus cereus, Bacillus licheniformis, Bacillus subtilis, Bacillus megaterium, Bacillus pumilus and Kocuria rosea. 16S rRNA gene sequencing was performed to confirm these results and to obtain identifications for the bacteria not identified with the BD BBL CRYSTALTM GP ID system. Additionally identified bacteria included Bacillus thuringiensis, Arthrobacter oxydans and Exiguobacterium acetylicum. Morphological properties of the different species were studied with transmission electron microscopy (TEM) to confirm sequencing results. All the isolates displayed rod shaped cells with the exception of Arthrobacter oxydans being spherical in the stationary phase of their life cycle. Bulk water samples were taken at two sites in close proximity with the biofilm sampling sites. The DNA was extracted directly from the water samples and the 16S rRNA gene region was amplified. Denaturing gradient gel electrophoresis (DGGE) was performed to confirm the presence of the isolates from the biofilm samples in the bulk water samples. The presence of Bacillus pumilus and Arthrobacter oxydans could be confirmed with DGGE. This study demonstrated the presence of potentially pathogenic HPC bacteria within biofilms in a drinking water distribution system. It also confirmed the probable presence of two of these biofilm based bacteria in the bulk water. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2010.
473

Investigation of the source and occurrence of lead in the Brandon Water Supply System

Winning, Lisa 16 January 2015 (has links)
Lead concentrations in drinking water were found to exceed the provincial standard of 10 µg/L in Brandon, Portage la Prairie and Winnipeg, in some locations. Lead dioxide was identified in the scale coating the interior of lead pipes in the Brandon water distribution system. However, during periods of stagnation, free chlorine is used up by the elevated concentrations of natural organic matter (NOM) in the treated water, and lead dioxide is reduced back to more soluble divalent lead, resulting in release of dissolved lead. The removal of NOM and the targeted removal of aquatic humic substances (AHS), thought to be the most reactive fraction of NOM, were investigated as a means of decreasing the reduction of lead dioxide. Contrary to expected results, targeted removal of AHS was not found to have a significant impact on reduction of lead dioxide, while removal of 50% of the NOM non-preferentially was found to significantly decrease the reduction of lead dioxide. This indicates that AHS are not the most reductant fraction of natural organic matter in this particular water.
474

Differential gene expression by two strains of Escherichia coli (K12 and an environmental isolate) in response to temperature and nutrient stress using microarrays

Wetherell, Charmaine 02 June 2010 (has links)
In this study we evaluated the use of microarray technology in Bacterial Source Tracking (BST), with the intent of identifying candidate genes to be used to differentiate between closely related strains of Escherichia coli. We anticipate that genes differentially expressed in response to stress by both a laboratory strain and environmental isolate could be used as marker genes on a microarray in BST. Using microarrays we characterized the transcriptional response of E. coli K12 MG1655 (K12), maintained for about 80 years in an artificial environment versus E. coli 43(C)-4A or E43, a strain recently isolated from the natural environment. The responses were to a temperature decrease from 37°C to 21°C, and to growth in a diluted LB broth (dLB). Overall we found that there were more genes differentially expressed between the strains than either strain's response to the stresses. At the 4-fold threshold, at reduced temperature there were only 26 genes differentially regulated by K12 and 9 by E43, respectively. In K12 the functions of some differentially expressed genes were linked to the general stress response and biofilm formation. A few genes differentially expressed by E43 were involved in the stress response. Similarly, in response to dLB there were 46 and 11 genes differentially expressed by K12 and E43 respectively. While it appeared that genes differentially expressed by K12 were involved in dealing with nutrient deficiencies, the genes differentially expressed by E43 did not show a similar pattern. Of these genes, none were obvious candidate genes for a microarray to be used in BST. However, we did find that 169, 286 and 254 genes were differentially expressed between K12 and E43 at 37°C, 21°C, and in dLB, respectively. Many of these genes were differentially expressed under all 3 growth conditions. Several of the genes differentially expressed between the strains were in the O-antigen-lipopolysaccharide gene family and are genes that could potentially be used on a microarray in BST. We found that E43, isolated from the natural environment, did not respond to the growth conditions in the same way as the model strain, E. coli K12, indicating that strains of E. coli isolated from the natural environment may not be identical to the model strain K12. It is suggested that other strains isolated from the natural environment be investigated. Such studies could also reveal genes differentially expressed between the strains that could be used on a microarray for use in BST.
475

Source Water Quality Assessment and Source Water Characterization for Drinking Water Protection

Wang, Yuxin 01 September 2014 (has links)
Source water quality plays a critical role in maintaining the quality and supply of drinking water, yet it can be negatively affected by human activities. In Pennsylvania, coal mining and treatment of conventional oil and gas drilling produced wastewaters have affected source water quality for over 100 years. The recent unconventional natural gas development in the Marcellus Shale formation produces significant volumes of wastewater containing bromide and has the potential to affect source water quality and downstream drinking water quality. Wastewater from coal-fired power plants also contains bromide that may be released into source water. Increasing source water bromide presents a challenge as even small amounts of bromide in source water can lead to carcinogenic disinfection by-products (DBPs) in chlorinated finished drinking water. However, bromide is not regulated in source water and is not removed by conventional drinking water treatment processes. The objective of this work is to evaluate the safe bromide concentration in source water to minimize the cancer risk of trihalomethanes - a group of DBPs - in treated drinking water. By evaluating three years of water sampling data from the Monongahela River in Southwestern Pennsylvania, the present analysis reached three conclusions. First, bromide monitoring for source water quality should be taken at drinking water intake points. Water sample types (river water samples vs drinking water intake samples) can lead to different water quality conclusions and thus affect regulatory compliance decision-making. Second, bromide monitoring at drinking water intake points can serve as a predictor for changes in heavily brominated trihalomethanes concentrations in finished water. Increasing bromide in source water can serve as an early warning sign of increasing formation of heavily brominated trihalomethanes and their associated cancer risks in drinking water. Finally, this work developed a statistical simulation model to evaluate the effect of source water bromide on trihalomethane formation and speciation and to analyze the changing cancer risks in water associated with these changing bromide concentrations in the Monongahela River. The statistical simulation method proposed in this work leads to the conclusion that the bromide concentration in source water must be very low to prevent the adverse health effects associated with brominated trihalomethanes in chlorinated drinking water. This method can be used by water utilities to determine the bromide concentration in their source water that might indicate a need for process changes or by regulatory agencies to evaluate source water bromide issues.
476

Potential of Pharmaceuticals and Personal Care Products (PPCPs) as Nitrosamine Precursors during Drinking Water Disinfection

Shen, Ruqiao 13 August 2013 (has links)
N-nitrosamines are considered as a group of emerging disinfection byproducts (DBPs) with potential carcinogenicity at ng/L level. The presence of nitrosamines in drinking water is most commonly associated with chloramination of amine-based precursors. This research investigates the potential of amine-based pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors under practical drinking water disinfection conditions, as well as some critical factors that may affect the nitrosamine formation via PPCPs. All of the twenty selected PPCPs were able to form the corresponding nitrosamines upon chloramine disinfection, and eight of them rendered molar conversions higher than 1 % under practical disinfection conditions. Ranitidine had the highest N-nitrosodimethylamine (NDMA) molar conversion among the tested PPCPs. A three-parameter kinetic model was proposed to describe and predict the NDMA formation from pharmaceuticals during chloramination in various water matrices. The model accurately reflected all three significant characteristics of the NDMA formation curve, including an initial lag phase, followed by a fast increase in NDMA formation, and eventually reaching a plateau. In lab-grade water, the NDMA formation from pharmaceuticals was affected by the Cl2:NH4-N mass ratio, pH, and prechlorination. The NDMA formation increased with the Cl2:NH4-N mass ratio, indicating an enhancement effect of dichloramine. The pH affected both the ultimate NDMA conversion and the reaction rate. The reaction rate is mainly determined by the level of non-protonated amine species, and it increased consistently with increasing pH. The ultimate NDMA conversion is limited by the level of dichloramine, and the maximum NDMA formation occurred in the pH range of 7 to 8. The application of prechlorination may increase or reduce the NDMA conversion, depending on the chlorine reactivity towards the amine group and its surrounding structures. Water matrix components can slow down the initial NDMA formation from selected pharmaceuticals most likely due to the formation of natural organic matter (NOM)-pharmaceutical complexes, while they had less impact on the ultimate NDMA molar conversion. The application of prechlorination may enhance the initial reaction by destroying the NOM-pharmaceutical complexes, but prolonged prechlorination may further inhibit the NDMA formation due to the binding between pharmaceuticals and NOM breakdown products.
477

Coagulation Optimization to Minimize and Predict the Formation of Disinfection By-products

Wassink, Justin 04 January 2012 (has links)
The formation of disinfection by-products (DBPs) in drinking water has become an issue of greater concern in recent years. Bench-scale jar tests were conducted on a surface water to evaluate the impact of enhanced coagulation on the removal of organic DBP precursors and the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). The results of this testing indicate that enhanced coagulation practices can improve treated water quality without increasing coagulant dosage. The data generated were also used to develop artificial neural networks (ANNs) to predict THM and HAA formation. Testing of these models showed high correlations between the actual and predicted data. In addition, an experimental plan was developed to use ANNs for treatment optimization at the Peterborough pilot plant.
478

Potential of Pharmaceuticals and Personal Care Products (PPCPs) as Nitrosamine Precursors during Drinking Water Disinfection

Shen, Ruqiao 13 August 2013 (has links)
N-nitrosamines are considered as a group of emerging disinfection byproducts (DBPs) with potential carcinogenicity at ng/L level. The presence of nitrosamines in drinking water is most commonly associated with chloramination of amine-based precursors. This research investigates the potential of amine-based pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors under practical drinking water disinfection conditions, as well as some critical factors that may affect the nitrosamine formation via PPCPs. All of the twenty selected PPCPs were able to form the corresponding nitrosamines upon chloramine disinfection, and eight of them rendered molar conversions higher than 1 % under practical disinfection conditions. Ranitidine had the highest N-nitrosodimethylamine (NDMA) molar conversion among the tested PPCPs. A three-parameter kinetic model was proposed to describe and predict the NDMA formation from pharmaceuticals during chloramination in various water matrices. The model accurately reflected all three significant characteristics of the NDMA formation curve, including an initial lag phase, followed by a fast increase in NDMA formation, and eventually reaching a plateau. In lab-grade water, the NDMA formation from pharmaceuticals was affected by the Cl2:NH4-N mass ratio, pH, and prechlorination. The NDMA formation increased with the Cl2:NH4-N mass ratio, indicating an enhancement effect of dichloramine. The pH affected both the ultimate NDMA conversion and the reaction rate. The reaction rate is mainly determined by the level of non-protonated amine species, and it increased consistently with increasing pH. The ultimate NDMA conversion is limited by the level of dichloramine, and the maximum NDMA formation occurred in the pH range of 7 to 8. The application of prechlorination may increase or reduce the NDMA conversion, depending on the chlorine reactivity towards the amine group and its surrounding structures. Water matrix components can slow down the initial NDMA formation from selected pharmaceuticals most likely due to the formation of natural organic matter (NOM)-pharmaceutical complexes, while they had less impact on the ultimate NDMA molar conversion. The application of prechlorination may enhance the initial reaction by destroying the NOM-pharmaceutical complexes, but prolonged prechlorination may further inhibit the NDMA formation due to the binding between pharmaceuticals and NOM breakdown products.
479

Coagulation Optimization to Minimize and Predict the Formation of Disinfection By-products

Wassink, Justin 04 January 2012 (has links)
The formation of disinfection by-products (DBPs) in drinking water has become an issue of greater concern in recent years. Bench-scale jar tests were conducted on a surface water to evaluate the impact of enhanced coagulation on the removal of organic DBP precursors and the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). The results of this testing indicate that enhanced coagulation practices can improve treated water quality without increasing coagulant dosage. The data generated were also used to develop artificial neural networks (ANNs) to predict THM and HAA formation. Testing of these models showed high correlations between the actual and predicted data. In addition, an experimental plan was developed to use ANNs for treatment optimization at the Peterborough pilot plant.
480

Selecting Sustainable Point-of-Use and Point-of-Entry Drinking Water Treatment: A Decision Support System

Hamouda, Mohamed January 2011 (has links)
Point-of-use (POU) and point-of-entry (POE) water treatment are forms of decentralized water treatment that are becoming increasingly sought alternatives for ensuring the safety of drinking water. Although the acceptance of POU and POE systems is still the subject of some debate, it is generally acknowledged that they have a role to play in drinking water treatment. However, some of the main drivers for the increase in the use of POU and POE alternatives include: (1) the emergence of new technologies with high removal efficiencies of target contaminants; (2) the enhanced certification system of POU and POE treatment devices and components which ensures that devices have been well engineered to achieve defined contaminant removal targets and do not add contaminants from materials of construction; (3) the inclusion of POU and POE systems as acceptable means to comply with drinking water standards; and (4) the concerns voiced by consumers in several surveys regarding the safety of centrally treated drinking water; which, regardless of whether or not these concerns are justified, have led to an increase in the use of POU and POE treatment systems. With the commercialization of these devices the task of selecting a suitable device for treatment has become cumbersome. When the inherent complexity of a particular drinking water treatment task is added to the mix, a complex decision making situation is created. Thus the need for designing a decision support tool to compare and select POU and POE treatment systems was evident. Currently the best decision aid for selecting POU and POE systems is NSF International’s listing of the devices and their contaminant reduction claims. A significant contribution of this research is the depiction of an appropriate conceptual framework for developing usable and valid decision support systems (DSSs) to select or design water or wastewater treatment systems. A thorough investigation of the methods used to develop DSSs benchmarked a systematic approach to developing DSSs, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. Finally, it was concluded that there is a need to develop integrated DSSs that are generic, user-friendly and employ a systems analysis approach. Another significant contribution of this research is applying a systems analysis approach to outline aspects of implementation, management, and governance of POU and POE water treatment systems. The analysis also included a timeline of the progress of POU and POE treatment from regulatory, industry and certification, and research perspectives. Results of the analysis were considered the first step of a conceptual framework for the sustainability assessment of POU and POE treatment systems which acts as the basis for developing a decision support system that will help select sustainable POU or POE treatment systems. In the context of POU and POE treatment, sustainability encompasses providing: (a) safe drinking water to help maintain good human health and hygiene; (b) minimum negative impact on the environment; (c) better use of human, natural, and financial resources; (d) a high degree of functional robustness and flexibility; and (e) cultural acceptance thus encouraging responsible behavior by the users. The most significant contribution of this research is developing, for the first time, a set of sustainability criteria, objectives, and quantifiable indicators to properly assess the sustainability of the various POU and POE alternatives. Twenty five quantitative and qualitative indicators covering technical, economic, environmental, and socio-cultural aspects of implementing a POU or a POE system were defined. Results of a survey of experts’ judgment on the effectiveness of the developed list of indicators generated 52 comments from 11 experts, which helped in refining and enhancing the list. The conceptual framework for assessing the sustainability of POU and POE systems represented a blueprint for building the decision support system. Decision logic and cognitive thinking was used to formulate the calculation of the 20 refined indicators. The Analytical Hierarchy Process (AHP), a recognized Multi-criteria Decision Analysis (MCDA) tool, was employed to construct the structural hierarchy of sustainability indicators. Pairwise comparison was used to help in the analysis of indicators' relative importance and develop the indicators’ weights. A survey was designed to develop the relative weights of the indicators based on the average response of 19 stakeholders to a series of pairwise comparison questions pertaining to the relative importance of the indicators. Finally, the practical contribution of this research is the development of, for the first time, a new Decision Support System for Selecting Sustainable POU and POE Treatment Systems (D4SPOUTS) suitable for a particular water treatment case. The MCDA technique explained above is combined with designed screening rules, constraints, and case characteristics to be applied to a knowledgebase of POU and POE treatment systems incorporated in the DSS. The components of the DSS were built using Microsoft® Excel® and Visual Basic® for Applications. The quality of the DSS and aspects of its usability, applicability, and sensitivity analysis are demonstrated through a hypothetical case study for lead removal from drinking water. This research is expected to assist water purveyors, consultants, and other stakeholders in selecting sustainable and cost effective POU and POE treatment systems.

Page generated in 0.3484 seconds