Spelling suggestions: "subject:"deriven diffusive lemsystems"" "subject:"deriven diffusive atemsystems""
1 |
Steady State Properties of Some Driven Diffusive SystemsMazilu, Irina 05 September 2002 (has links)
In an attempt to reach a better understanding of the properties and critical behavior of non-equilibrium systems, we investigate the steady state properties of three simple models, variations of the prototype, the driven Ising lattice gas. Our first system studied is the bilayer model, a stack of two driven Ising lattice gases allowed to interact. We study this model using a very simple analytic approximation, the high temperature expansion. Building on existing simulation data and field theory results, our goal is to test how faithfully the series expansion can reproduce the Monte Carlo phase diagram. We find that the agreement between our calculations and the already reported simulations results is remarkably good. Next, we investigate the critical behavior of a two-dimensional Ising lattice gas driven into a non-equilibrium steady state, subject to a local modification of the dynamics, namely, having anisotropic attempt frequencies for exchanges along different spatial directions. We employ both Monte Carlo simulation techniques and a high temperature expansion approximation and find the phase diagram of the system, perform a finite-size scaling study in order to determine the universality class of the model and compare our simulation results with the phase diagram obtained using the high temperature expansion. We conclude that the bias in the jump rates does not affect the universal critical properties of the system: the modified model is in the same universality class as the driven Ising lattice gas. Our last objective concerns a different inroad into the study of non-equilibrium steady states. Instead of investigating a non-equilibrium steady state via indirect observables, such as correlation functions and order parameters, we seek to compute the steady state probability distribution directly. This is feasible only for systems with a small number of degrees of freedom. We chose to study a one-dimensional version of the so-called two-temperature kinetic Ising model. We solve the master equation exactly for a 1x6 system, and compare the full configurational probability distribution with its equilibrium counterpart. / Ph. D.
|
2 |
Aging processes in complex systemsAfzal, Nasrin 27 April 2013 (has links)
Recent years have seen remarkable progress in our understanding of physical aging in nondisordered systems with slow, i.e. glassy-like dynamics. In many systems a single dynamical length L(t), that grows as a power-law of time t or, in much more complicated cases, as a logarithmic function of t, governs the dynamics out of equilibrium. In the aging or dynamical scaling regime, these systems are best characterized by two-times quantities, like dynamical correlation and response functions, that transform in a specific way under a dynamical scale transformation. The resulting dynamical scaling functions and the associated non-equilibrium exponents are often found to be universal and to depend only on some global features of the system under investigation.
We discuss three different types of systems with simple and complex aging properties, namely reaction diffusion systems with a power growth law, driven diffusive systems with a logarithmic growth law, and a non-equilibrium polymer network that is supposed to capture important properties of the cytoskeleton of living cells.
For the reaction diffusion systems, our study focuses on systems with reversible reaction diffusion and we study two-times functions in systems with power law growth. For the driven diffusive systems, we focus on the ABC model and a related domain model and measure two- times quantities in systems undergoing logarithmic growth. For the polymer network model, we explain in some detail its relationship with the cytoskeleton, an organelle that is responsible for the shape and locomotion of cells. Our study of this system sheds new light on the non- equilibrium relaxation properties of the cytoskeleton by investigating through a power law growth of a coarse grained length in our system. / Ph. D.
|
3 |
Um modelo de exclusão assimétrico para o transporte de partículas mediado por motores moleculares / Asymetric exclusion model for intracellular transport driven by molecular motorsSena, Elisa Thomé 25 March 2008 (has links)
Motores moleculares são proteínas capazes de transportar objetos tais como vesículas, organelas e macromoléculas ao longo do citoesqueleto. Tratam-se de dispositivos bastante interessantes do ponto de vista físico, pois produzem trabalho em um ambiente extremamente ruidoso. Recentemente, diversos experimentos realizados in vivo têm revelado que objetos transportados por motores moleculares ao longo dos microtúbulos apresentam movimento bidirecional. Embora o movimento unidirecional dos motores envolvidos no transporte destes objetos seja bem caracterizado tanto experimentalmente quanto teoricamente, o movimento bidirecional das partículas transportadas pelos motores ainda não é bem entendido. Contudo, acredita-se que este fenômeno seja causado pela cooperatividade dos motores moleculares. Existem na literatura diversos trabalhos que visam descrever o comportamento coletivo de partículas locomovendo-se sobre uma rede unidimensional com interações de volume excluído e taxas de transição assimétricas. Estes modelos são conhecidos como TASEP (Totally asymmetric simple exclusion processes ) ou ASEP (Asymmetric simple exclusion processes ) e fazem parte de uma classe de modelos denominados sistemas difusivos dirigidos_. Embora alguns autores tenham utilizado modelos do tipo ASEP e TASEP para descrever o movimento dos motores moleculares exclusivamente [37], [38], não há ainda nesta visão microscópica, extensões deste modelo para incorporar as partículas cuja dinâmica depende exclusivamente da presença de motores. No presente trabalho propomos um modelo de exclusão, desenvolvido com o intuito de descrever o movimento conjunto de motores moleculares e das partículas carregadas pelos mesmos, as quais por simplicidade denominamos vesículas. Neste modelo, as vesículas não possuem dinâmica própria, ou seja, dependem da interação com os motores moleculares para se movimentarem. Procuramos soluções analíticas para este modelo para o 1 RESUMO 2 caso em que há apenas uma vesícula locomovendo-se sobre a rede. Utilizando o método das matrizes [32], calculamos a velocidade média da vesícula no estado estacionário e analisamos seu comportamento em situações de interesse. / Molecular motors are proteins that transport objects such as vesicles, organelles and macromolecules along the cytoskeletum of cells. For physics, they are very interesting devices because they are able to generate work in an extremely viscous environment. Recently, many in vivo experiments have revealed that objects transported by molecular motors move bidirectionally along microtubules. Although the unidirectional movement of such molecular motors is experimentally and theoretically well characterized, the movement of particles transported by these motors is not well understood yet. However, this fenomenum is believed to be caused by the cooperativity of molecular motors. A great number of works are found in literature, which were formulated to describe the collective behaviour of many particles moving in a one-dimensional lattice with a preferred hop rate and exclusion. These models are known as TASEP (Totally asymmetric simple exclusion processes) or ASEP (Asymmetric simple exclusion processes) and are part of a class of models named _driven di_usive systems_. Although some authors made use of ASEP and TASEP models to describe the movement of molecular motors [37], [38], there is not yet, in this microscopic point of view, extensions of these models capable of incorporate particles which the dynamics depends exclusivaly from the presence of motors. In this work we propose a exclusion model developed to describe the joint movement of molecular motors and particles, generally called vesicles. In this model, vesicles do not have a proper dynamics, that is, they on the interaction with molecular motors to move. We look after analytical solutions of this model when there is only one vesicle moving on the lattice. We use a matrix formulation [32] to obtain the mean velocity of the vesicle and analyse its behaviour in situations of interest.
|
4 |
Um modelo de exclusão assimétrico para o transporte de partículas mediado por motores moleculares / Asymetric exclusion model for intracellular transport driven by molecular motorsElisa Thomé Sena 25 March 2008 (has links)
Motores moleculares são proteínas capazes de transportar objetos tais como vesículas, organelas e macromoléculas ao longo do citoesqueleto. Tratam-se de dispositivos bastante interessantes do ponto de vista físico, pois produzem trabalho em um ambiente extremamente ruidoso. Recentemente, diversos experimentos realizados in vivo têm revelado que objetos transportados por motores moleculares ao longo dos microtúbulos apresentam movimento bidirecional. Embora o movimento unidirecional dos motores envolvidos no transporte destes objetos seja bem caracterizado tanto experimentalmente quanto teoricamente, o movimento bidirecional das partículas transportadas pelos motores ainda não é bem entendido. Contudo, acredita-se que este fenômeno seja causado pela cooperatividade dos motores moleculares. Existem na literatura diversos trabalhos que visam descrever o comportamento coletivo de partículas locomovendo-se sobre uma rede unidimensional com interações de volume excluído e taxas de transição assimétricas. Estes modelos são conhecidos como TASEP (Totally asymmetric simple exclusion processes ) ou ASEP (Asymmetric simple exclusion processes ) e fazem parte de uma classe de modelos denominados sistemas difusivos dirigidos_. Embora alguns autores tenham utilizado modelos do tipo ASEP e TASEP para descrever o movimento dos motores moleculares exclusivamente [37], [38], não há ainda nesta visão microscópica, extensões deste modelo para incorporar as partículas cuja dinâmica depende exclusivamente da presença de motores. No presente trabalho propomos um modelo de exclusão, desenvolvido com o intuito de descrever o movimento conjunto de motores moleculares e das partículas carregadas pelos mesmos, as quais por simplicidade denominamos vesículas. Neste modelo, as vesículas não possuem dinâmica própria, ou seja, dependem da interação com os motores moleculares para se movimentarem. Procuramos soluções analíticas para este modelo para o 1 RESUMO 2 caso em que há apenas uma vesícula locomovendo-se sobre a rede. Utilizando o método das matrizes [32], calculamos a velocidade média da vesícula no estado estacionário e analisamos seu comportamento em situações de interesse. / Molecular motors are proteins that transport objects such as vesicles, organelles and macromolecules along the cytoskeletum of cells. For physics, they are very interesting devices because they are able to generate work in an extremely viscous environment. Recently, many in vivo experiments have revealed that objects transported by molecular motors move bidirectionally along microtubules. Although the unidirectional movement of such molecular motors is experimentally and theoretically well characterized, the movement of particles transported by these motors is not well understood yet. However, this fenomenum is believed to be caused by the cooperativity of molecular motors. A great number of works are found in literature, which were formulated to describe the collective behaviour of many particles moving in a one-dimensional lattice with a preferred hop rate and exclusion. These models are known as TASEP (Totally asymmetric simple exclusion processes) or ASEP (Asymmetric simple exclusion processes) and are part of a class of models named _driven di_usive systems_. Although some authors made use of ASEP and TASEP models to describe the movement of molecular motors [37], [38], there is not yet, in this microscopic point of view, extensions of these models capable of incorporate particles which the dynamics depends exclusivaly from the presence of motors. In this work we propose a exclusion model developed to describe the joint movement of molecular motors and particles, generally called vesicles. In this model, vesicles do not have a proper dynamics, that is, they on the interaction with molecular motors to move. We look after analytical solutions of this model when there is only one vesicle moving on the lattice. We use a matrix formulation [32] to obtain the mean velocity of the vesicle and analyse its behaviour in situations of interest.
|
Page generated in 0.0704 seconds