• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 113
  • 61
  • 32
  • 30
  • 29
  • 28
  • 16
  • 12
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 929
  • 146
  • 145
  • 142
  • 119
  • 119
  • 116
  • 109
  • 93
  • 92
  • 90
  • 89
  • 69
  • 69
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design of Buck LED Driver Circuits with Single-stage Power Factor Correction

Liao, Hsuan-yi 25 September 2009 (has links)
This thesis is to design an LED driver circuit with constant output current and Power Factor Correction(PFC) control. Switching power converter is applied for power stage of the LED driver circuit, a non-insulated Buck converter without transformer is used, and the inductor current of Buck converter is operating in Continuous Conduction Mode(CCM). According to the operating principle of Buck converter, the equivalent mathematical model and system block diagram is developed to establish the traditional closed loop PFC control circuit. The controller parameters are set up by time-domain and frequency-domain analysis to achieve the goal with constant output current and PFC control. Furthermore, the thesis presents a more effective PFC control method to reduce the cost of multiplier used in traditional PFC control method and overcome the congenital defect of Buck converter. Both two PFC control methods are confirmed and compared by simulation and experiment. The results show that the proposed control method has more effective performance and achieve constant output current for LED with high power factor by 0.966 under full-load condition.
72

A clock driver with reduced EMI

Bengtsson, Mikael January 2014 (has links)
A clock driver that works on the principle of charging and discharging the clock network in a VLSI circuit in two steps is investigated in a few different configurations. The aim of the design is twofold: to reduce the power consumption to reduce the third harmonic of the clock signal, and thereby the EMI (electromagnetic interference) emitted by the clock network. The first should be possible to accomplish as the clock interconnect network gets charged by half the voltage during each rising transition, and the second should be possible to accomplish by carefully time the rising and falling transitions, so that the third Fourier coefficient of the resulting wave form cancels. The drivers are loaded by eight 16-bit adders. The drivers’ power consumption, and the spectrum of the output signal, are investigated under varying clock frequencies, power supply voltage, and driver architecture. The results are compared to a conventional square wave clock. The results are that while the third harmonics of the resulting output sees an improvement in all the investigated cases over the square wave clock, the power savings are, for higher clock frequencies, more than completely canceled by the extra power needed in the logic stage which controls these drivers. On the other hand, the power consumption of the new driver appears to drop below that of the conventional driver when the clock frequency drops below approximately 100MHz. A few suggestions for further investigations of new designs and clock wave forms are given.
73

Driver-truck models for software-in-the-loop simulations

Daniels, Oskar January 2014 (has links)
By using vehicle-to-vehicle communication, vehicles can cooperate in many waysby sending positions and other relevant data between each other. One popularexample is platooning where many, especially heavy vehicles, drive on a trailwith short distances resulting in a reduction of air resistance. To achieve a goodefficiency of the platooning it is required that vehicle fleets are coordinated, sothat the percentage of time for driving in platoon is maximized without affectingthe total driving time and distance too much. For large fleets, this is a complexoptimization problem which would be difficult to solve by only using the realworld as the test environment. To provide a more adaptable test environment for the communication and platooningcoordination, an augmented reality with virtual vehicles (“Ghost trucks")with relevant communication abilities are developed. In order to realise the virtualtesting environment for trucks, Scania initiated a project that could be dividedinto the workload of three master theses. This thesis involved the part ofdeveloping the virtual vehicles, which include the development of a truck modeland a driver model. The developed truck model consists of a single track vehicle model and severalpowertrain models of different complexity provided by Scania. Additionally, thedriver model consists of steering wheel and speed controls in order to keep thetruck on a safe distance from the lead truck and stay on a preferred lane. The keyfeature of the driver-truck model is its modular design, which provides great flexibilityin selecting the level of detail for each component. The driver-truck modelcan be duplicated and simulated together in real time and performs platooningwith each other in a road system based on the real world. As the driver-truckmodel is module based, it can easily be extended for future purposes with morecomplex functions. The driver-truck model is implemented in Simulink and the simulation performancefor different model complexity is evaluated. It is demonstrated that theflexibility of the developed model allows a balanced decision to be made betweenrealistic truck behavior and simulation speed. Furthermore, multi-truck simulationsare performed using the model, which demonstrate the effectiveness of themodel in the evaluation of truck platooning operations.
74

Empirical study of the effect of offramp queues on freeway mainline traffic flow

Toth, Christopher Stephen 12 January 2015 (has links)
The dissertation examines the relationship between the number of lane changes, the speed of the ramp lane, and the location upstream of the ramp split. Analyses indicate the number of lane changes exhibits a parabolic relationship with respect to the ramp lane speed, and the number of lane changes exhibits gamma-distributed relationship with respect to the distance upstream of the ramp. The macroscopic lane changing model presented is best characterized as the development of generalized lane-changing relationships, and provides a starting point from which more complex corridor-level models can be developed. This study also identifies an unusual car-following behavior exhibited by certain lane-changing drivers. When the target lane is moving slowly, some lane-changing drivers will slow down, causing a disruption in their initial lane. Regression analysis is used to estimate the speed upstream of the initial lane to indicate the disruption is responsible for the lateral propagation of congestion. The lane choice of exiting vehicles is also studied. Lane choice appears to be a function of origin/destination, and freeway speed. As speeds in the general purpose lanes decrease, exiting vehicles are more likely to wait longer to move into the exit ramp lanes, resulting in an increased lane changing density. Results from this study are expected to have the greatest impact on microscopic lane-change model validation. Additionally, results have implications for design and safety issues associated with freeway ramps. As data collection technologies improve and data becomes increasingly available, this research provides the basis for the further development of more elaborate lane-changing models.
75

The learning driver meeting traveller information needs /

Karl, Charles A. January 2003 (has links)
Thesis (DBA) -- Swinburne University of Technology, Graduate School of Entrepreneurship, 2003. / Submitted for the degree of Doctor of Business Administration, Graduate School of Entrepreneurship, 2003. Typescript. Includes bibliographical references (p. 212-224).
76

DCarS driving rules training software for handheld devices /

Haque, Md Moynul. January 2008 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2008. / "August, 2008." Includes bibliographical references (leaves 67-71). Online version available on the World Wide Web.
77

Mobility training and driver education

Flax, Marshall Elliott. January 1982 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1982. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 59-61).
78

Conception caractérisation et mise en oeuvre d'un circuit intégré type driver en CMOS pour composants GaN / Design characterization and implementation of an integrated CMOS driver circuit for GaN components

Nguyen, Van-Sang 08 December 2016 (has links)
Le projet de thèse s'inscrit dans le consortium industriel académique MEGAN (More Electric Gallium Nitride) réunissant de nombreux industriels français, grands groupes et PME (Renault, Schneider Electric, Safran, IDMOS, Valeo...) et académiques (G2Elab, Ampère, SATIE...) et le CEA. Le projet consiste à introduire de nouvelles technologies de composants de puissance à base de matériaux en GaN afin d'augmenter les performances des convertisseurs statiques pour divers types d'applications. La thèse est intégralement focalisée sur la partie Driver intégré de composants GaN à base d'une technologie CMOS SOI XFAB XT018 pour favoriser l'utilisation des systèmes à haute fréquence et haute température. La thèse consiste à étudier des architectures des drivers et des fonctionnalités innovantes permettant de limiter les problèmes inhérents à la haute fréquence et la haute température (Compatibilité ÉlectroMagnétique- CEM, pertes de commande par courant de fuites, limites fonctionnelles...). Suite à l'étude des architectures à l'échelle du bras d'onduleur à base de composants discrets, un circuit intégré est conçu en collaboration avec les partenaires du projet. Le circuit intégré est alors réalisé avant d'être caractérisé puis mis en œuvre dans des démonstrateurs dans le cadre du projet. En particulier, des caractéristiques de réponses en fréquence et de tenue en température seront proposées. La mise en œuvre est conduite au sein même du module de puissance intégrant les composants de puissance en GaN, au plus près de ceux-ci pour favoriser les fonctionnements à haute fréquence. Le démonstrateur final peut servir plusieurs types d'applications de part sa versatilité. Le travail de thèse est alors plus spécifiquement orienté sur l'étude du comportement haute fréquence du driver et de l'ensemble interrupteurs avec fortes vitesses de commutation / drivers d’un bras d'onduleur. / This Ph.D work is part of the industrial academic project MEGaN (More Electric Gallium Nitride) involving many French companies (Renault, Schneider Electric, Safran, ID MOS, Valeo, ...), academic institutions (G2Elab, Ampere, SATIE ...) and CEA. MEGaN project aims are to introduce a new technology of the power components based on GaN materials, to increase the performance of the static converters for various applications.This research is highly focused on the integrated driver and other power device peripheral units for GaN-based components. This is done in SOI CMOS XFAB XT018 technology to promote performing in high-frequency and high temperature applications. It involves examining driver's architectures and features, innovative methods to limit problems inherent in high frequency and high temperature (conducted EMI perturbation, delay mismatch, functional limitations ...). After studying the architecture at the scale of the discrete circuits, the integrated circuits are designed in collaboration with the project partners. The integrated circuit is manufactured by foundry XFAB before being characterized and implemented.In particular, the characteristics at high frequency response and high temperature compliance are proposed. The final implementation is conducted in the hybrid power module power with the power components GaN, as close as possible to those for operation at high frequency which is presented in the end of this thesis. The final demonstrator serves several kinds of applications because of its versatility. The thesis is specifically focused on the study of high frequency behavior of the driver and power switches with high switching speed / the driver’s components of an inverter leg.
79

Application of robust nonlinear model predictive control to simulating the control behaviour of a racing driver

Braghieri, Giovanni January 2018 (has links)
The work undertaken in this research aims to develop a mathematical model which can replicate the behaviour of a racing driver controlling a vehicle at its handling limit. Most of the models proposed in the literature assume a perfect driver. A formulation taking human limitations into account would serve as a design and simulation tool for the automotive sector. A nonlinear vehicle model with five degrees of freedom under the action of external disturbances controlled by a Linear Quadratic Regulator (LQR) is first proposed to assess the validity of state variances as stability metrics. Comparison to existing stability and controllability criteria indicates that this novel metric can provide meaningful insights into vehicle performance. The LQR however, fails to stabilise the vehicle as tyres saturate. The formulation is extended to improve its robustness. Full nonlinear optimisation with direct transcription is used to derive a controller that can stabilise a vehicle at the handling limit under the action of disturbances. The careful choice of discretisation method and track description allow for reduced computing times. The performance of the controller is assessed using two vehicle configurations, Understeered and Oversteered, in scenarios characterised by increasing levels of non- linearity and geometrical complexity. All tests confirm that vehicles can be stabilised at the handling limit. Parameter studies are also carried out to reveal key aspects of the driving strategy. The driver model is validated against Driver In The Loop simulations for simple and complex manoeuvres. The analysis of experimental data led to the proposal of a novel driving strategy. Driver randomness is modelled as an external disturbance in the driver Neuromuscular System. The statistics of states and controls are found to be in good agreement. The prediction capabilities of the controller can be considered satisfactory.
80

Simulační modelování mechatronické soustavy manipulátoru v ADAMS / Simulation Modelling of Manipulator Mechatronic System in ADAMS

Foriška, Aleš January 2012 (has links)
This thesis deals with the simulation modelling of manipulator mechatronic system in ADAMS. The beginning of thesis is dedicated to the theoretical study of the compute modelling electro-mechanical systems and mechatronics approach modelling manipulator’s systems. Next chapters describe the creation of kinematics model of the manipulator with using ADAMS and proposal supporting frame in ANSYS/Workbench environment. The next step, manipulator and supporting frame simulation model is created for the computing vibration a dynamic analysis. At the end of this thesis is used cosimulation ADAMS and Matlab/Simulink for the control of synchronous drivers of manipulator.

Page generated in 0.0307 seconds