• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporating Perceptions, Learning Trends, Latent Classes, and Personality Traits in the Modeling of Driver Heterogeneity in Route Choice Behavior

Tawfik, Aly M. 11 April 2012 (has links)
Driver heterogeneity in travel behavior has repeatedly been cited in the literature as a limitation that needs to be addressed. In this work, driver heterogeneity is addressed from four different perspectives. First, driver heterogeneity is addressed by models of driver perceptions of travel conditions: travel distance, time, and speed. Second, it is addressed from the perspective of driver learning trends and models of driver-types. Driver type is not commonly used in the vernacular of transportation engineering. It is a term that was developed in this work to reflect driver aggressiveness in route switching behavior. It may be interpreted as analogous to the commonly known personality-types, but applied to driver behavior. Third, driver heterogeneity is addressed via latent class choice models. Last, personality traits were found significant in all estimated models. The first three adopted perspectives were modeled as functions of variables of driver demographics, personality traits, and choice situation characteristics. The work is based on three datasets: a driving simulator experiment, an in situ driving experiment in real-world conditions, and a naturalistic real-life driving experiment. In total, the results are based on three experiments, 109 drivers, 74 route choice situations, and 8,644 route choices. It is assuring that results from all three experiments were found to be highly consistent. Discrepancies between predictions of network-oriented traffic assignment models and observed route choice percentages were identified and incorporating variables of driver heterogeneity were found to improve route choice model performance. Variables from all three groups: driver demographics, personality traits, and choice situation characteristics, were found significant in all considered models for driver heterogeneity. However, it is extremely interesting that all five variables of driver personality traits were found to be, in general, as significant as, and frequently more significant than, variables of trip characteristics — such as travel time. Neuroticism, extraversion and conscientiousness were found to increase route switching behavior, and openness to experience and agreeable were found to decrease route switching behavior. In addition, as expected, travel time was found to be highly significant in the models that were developed. However, unexpectedly, travel speed was also found to be highly significant, and travel distance was not as significant as expected. Results of this work are highly promising for the future of understanding and modeling of heterogeneity of human travel behavior, as well as for identifying target markets and the future of intelligent transportation systems. / Ph. D.
2

Analyzing fluctuations in car-following

Wagner, Peter 13 May 2019 (has links)
Many car-following models predict a stable car-following behavior with a very small fluctuation around an equilibrium value g* of the net headway g with zero speed-difference Δv between the following and the lead vehicle. However, it is well-known and additionally demonstrated by data in this paper, that the fluctuations are much larger than these models predict. Typically, the fluctuation in speed difference is around ±2m/s, while the fluctuation in the net time headway T=g/v can be as big as one or even two seconds, which is as large as the mean time headway itself. By analyzing data from loop detectors as well as data from vehicle trajectories, evidence is provided that this randomness is not due to driver heterogeneity, but can be attributed to an internal stochasticity of the driver itself. A final model-based analysis supports the hypothesis, that the preferred headway of the driver is the parameter that is not kept constant but fluctuates strongly, thus causing the even macroscopically observable randomness in traffic flow.

Page generated in 0.1109 seconds