• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IMPACT BEHAVIOR OF AMMONIUM PERCHLORATE (AP) - HYDROXYL-TERMINATED POLYBUTADIENE (HTPB) COMPOSITE MATERIAL

Saranya Ravva (15353902) 25 April 2023 (has links)
<p>This work investigated the effects of varying the crystal sizes of ammonium perchlorate (AP) when embedded with a polymeric binder, hydroxyl-terminated polybutadiene (HTPB) on impact-induced temperature behavior.  AP and HTPB are the most used oxidizers and fuel binders in the aerospace solid rocket design industry. In this study, samples of 200 µm and 400µm coarse AP crystals in HTPB were constructed using a conventional hand-mixing method. Using a parametric optimization technique such as the Taguchi method, direct-ink-writing as the additive manufacturing process was used for achieving the required shape fidelity in printing HTPB and by introducing ultraviolet polymers to decrease the curing time.</p> <p>A drop hammer experiment in conjunction with an infrared camera was used to study the impact-induced behavior in the conventionally made AP-HTPB samples. The thermal images obtained from the camera at millisecond resolution are invaluable and provide information about distribution across the sample surface, and the evolution of temperature rise observed in the samples which are complex and not easily understood otherwise and therefore help in improving and attaining desired propellant performance. A two-sample t-Test has been utilized to infer the results and statistical nonsignificance has been observed in the highest temperature rises among 200 µm and 400 µm AP-HTPB sample conditions but a difference in temperature distribution has been observed. A much uniform distribution of temperature over the sample surface on impact is observed in thermal images of 200 µm AP-HTPB sample condition compared to 400 µm AP-HTPB sample condition.</p>

Page generated in 0.0402 seconds