• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drop Removal from Solid Surfaces: Shedding and Evaporation

Chini, Seyed Farshid Unknown Date
No description available.
2

Effects of Marangoni Flows on Particle Transport and Deposition during Drop Evaporation

Lihui Wang (7040942) 16 August 2019 (has links)
<div>The evaporation of a liquid drop containing particles resting on a substrate have diverse industrial applications including inkjet printing, spray coating, fabrication of functional nanomaterials, disease diagnosis, among others. In addition to these wide ranging practical applications, the sessile drop evaporation can be observed in everyday life with dew drops, coffee spills, and the dry patterns of other beverages.</div><div><br></div><div>The self-assembly of particles during drop evaporation is a process that is affected by various factors, such as contact line (CL) behaviors, microfluidic flows, short-range interactions of particle-interface and particle-particle. Each of these factors are complicated enough to study, let alone the total effects on the process. The primary goal of this work is to investigate the influence of microfluidic flows and the particle-interface interaction, viz. the evaporation process was subject to a pinned CL and the particle-particle interaction was neglected under dilute particle concentration. </div><div>To accomplish this goal, the Galerkin/Finite Element Method (G/FEM) is used to solve for the flow, the temperature and the particle concentration profiles. </div><div><br></div><div><br></div><div>The complexity of the problems comes from various surface phenomena, one of which is the surface tension. The surface tension brings capillary force in the normal direction and capillary flow toward the CL, which results in the well-known coffee-ring effect. Moreover, the surface tension changes with temperature, surfactant concentration, etc. resulting in Marangoni stresses in the tangential direction. The Marangoni stress on the surface leads to circulations of flow inside the drop and the circulation can be either clockwise or counterclockwise depending on the direction of the stress. </div><div><br></div><div>When the Marangoni stress is merely caused by temperature change, the circulation direction changes not only in time but also in space. At late stage of evaporation, i.e. with a small contact angle (CA), multi-circulation flow profiles emerge. This flow profiles are featured with stagnation points and transition points. The stagnation points can be further categorized into capillary-induced stagnation points and Marangoni-induced stagnation points. By introducing the concept of capillary-induced stagnation points, the simulations reached agreement with experiments in terms of the radial location of the observed stagnation points.</div><div><br></div><div><br></div><div>The multi-circulation flow profiles implied regional segregation inside the drop. When a large circulation is observed in most part of the drop and a small circulation exists near the CL, particle concentrations are relatively uniform in each individual region but differs significantly across the two regions. Transition points are used to characterize the location of the regional segregation, which can be adjusted by Marangoni stress.</div><div><br></div><div><br></div><div>Marangoni circulations in different directions revealed distinct influences on particle distribution and deposition. First, while both directions facilitate even distribution of particles, a clockwise circulation strengthens CL accumulation for a small Marangoni stress. Second, a counterclockwise circulation with a small Marangoni stress impedes the deposition rate of particles, while a clockwise circulation facilities the deposition no matter how small the Marangoni stress is. This results is under a condition of a strong adsorption between particles and substrates. </div><div><br></div><div>The analysis and understanding of the above results are crucial to elucidating and controlling the final deposition patterns of particles. Thus, the focus of this research is to understand the combined effect of Marangoni stress and capillary flow on particle deposition during sessile drop evaporation.</div><div><br></div>
3

Amélioration de l'évaporation des gouttes à l'aide de nanoparticules et d'alcools / Enhancement of drops evaporation using nanoparticles and alcohols

Chen, Pin 14 February 2018 (has links)
Au cours des dernières années, les exigences croissantes en matière de dissipation thermique à haut rendement pour la microélectronique, les engins spatiaux, les réacteurs nucléaires, etc., encouragent le développement d'échangeurs de chaleur de nouvelle génération. Le caloduc est l’un des équipements de refroidissement efficaces et potentiels. La plupart du transfert de masse et de chaleur se fait au niveau de la micro-région près de la ligne triple de contact (solide, liquide, vapeur), qui est essentielle à l'amélioration de la performance thermique du caloduc. Cette étude se concentre sur le processus d'évaporation de gouttes sessiles de deux nouveaux fluides de travail (solution binaire et nanofluide), qui possèdent une micro-région similaire à celle du caloduc. Le flux de Marangoni induit par le gradient de concentration et la conductivité thermique exceptionnelle devraient améliorer significativement le débit evaporé du mélange alcool-eau et du nanofluide de graphène, respectivement. Une combinaison de techniques acoustiques et infrarouges est développée pour suivre la variation de la concentration d'alcool pendant l'évaporation des gouttes des mélanges 1-butanol-eau et éthanol-eau. Selon l'observation du comportement d'évaporation à différentes températures du substrat, une série d'équations empiriques est suggérée pour prédire le taux d'évaporation de la solution binaire de 1-butanol-eau en considérant l'effet Marangoni thermal et solutal. De plus, l'effet de la PEGylation, de la concentration des nanoparticules et de la température du substrat sur l'évaporation de gouttes de graphène nanofluide est étudié par des méthodes microscopiques, optiques et infrarouges. Les résultats expérimentaux et l'analyse thermodynamique peuvent contribuer à la compréhension complète du mécanisme impliqué concernant les performances d'évaporation du nanofluide de graphène. / In recent years, increasing requirement in high efficient heat dissipation for micro-electronics, spacecraft, nuclear reactors etc., encourage the development of next generation heat exchanger. Heat pipe is one of potential effective cooling equipments and most of mass and heat transfer take place at micro-region near triple phase (solid, liquid, vapor) contact line of working fluid, which is essential to thermal performance improvement of heat pipe. This study focuses on the evaporation process of sessile droplets of two novel working fluids (binary solution and nanofluid), which possess similar micro-region to that in heat pipe. Concentration gradient induced Marangoni flow and exceptional thermal conductivity are expected to significantly enhance evaporation rate of alcohol-water mixture and graphene nanofluid, respectively. A combination of acoustic and infrared techniques is developed to track alcohol concentration variation during evaporation of 1-butanol and ethanol aqueous droplets. According to observation of evaporation behavior at different substrate temperature, a series of empirical equations is suggested to predict evaporation rate of 1-butanol-water binary solution droplet considering thermal and solutal Marangoni effect. In addition, the effect of PEGylation, nanoparticle concentration and substrate temperature on drop evaporation of graphene nanofluid are investigated by microscopic, optical and infrared methods. Experimental results and thermodynamic analysis can contribute to the full understanding of involved mechanism concerning evaporation performance of graphene nanofluid.

Page generated in 0.086 seconds