• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amélioration de l'évaporation des gouttes à l'aide de nanoparticules et d'alcools / Enhancement of drops evaporation using nanoparticles and alcohols

Chen, Pin 14 February 2018 (has links)
Au cours des dernières années, les exigences croissantes en matière de dissipation thermique à haut rendement pour la microélectronique, les engins spatiaux, les réacteurs nucléaires, etc., encouragent le développement d'échangeurs de chaleur de nouvelle génération. Le caloduc est l’un des équipements de refroidissement efficaces et potentiels. La plupart du transfert de masse et de chaleur se fait au niveau de la micro-région près de la ligne triple de contact (solide, liquide, vapeur), qui est essentielle à l'amélioration de la performance thermique du caloduc. Cette étude se concentre sur le processus d'évaporation de gouttes sessiles de deux nouveaux fluides de travail (solution binaire et nanofluide), qui possèdent une micro-région similaire à celle du caloduc. Le flux de Marangoni induit par le gradient de concentration et la conductivité thermique exceptionnelle devraient améliorer significativement le débit evaporé du mélange alcool-eau et du nanofluide de graphène, respectivement. Une combinaison de techniques acoustiques et infrarouges est développée pour suivre la variation de la concentration d'alcool pendant l'évaporation des gouttes des mélanges 1-butanol-eau et éthanol-eau. Selon l'observation du comportement d'évaporation à différentes températures du substrat, une série d'équations empiriques est suggérée pour prédire le taux d'évaporation de la solution binaire de 1-butanol-eau en considérant l'effet Marangoni thermal et solutal. De plus, l'effet de la PEGylation, de la concentration des nanoparticules et de la température du substrat sur l'évaporation de gouttes de graphène nanofluide est étudié par des méthodes microscopiques, optiques et infrarouges. Les résultats expérimentaux et l'analyse thermodynamique peuvent contribuer à la compréhension complète du mécanisme impliqué concernant les performances d'évaporation du nanofluide de graphène. / In recent years, increasing requirement in high efficient heat dissipation for micro-electronics, spacecraft, nuclear reactors etc., encourage the development of next generation heat exchanger. Heat pipe is one of potential effective cooling equipments and most of mass and heat transfer take place at micro-region near triple phase (solid, liquid, vapor) contact line of working fluid, which is essential to thermal performance improvement of heat pipe. This study focuses on the evaporation process of sessile droplets of two novel working fluids (binary solution and nanofluid), which possess similar micro-region to that in heat pipe. Concentration gradient induced Marangoni flow and exceptional thermal conductivity are expected to significantly enhance evaporation rate of alcohol-water mixture and graphene nanofluid, respectively. A combination of acoustic and infrared techniques is developed to track alcohol concentration variation during evaporation of 1-butanol and ethanol aqueous droplets. According to observation of evaporation behavior at different substrate temperature, a series of empirical equations is suggested to predict evaporation rate of 1-butanol-water binary solution droplet considering thermal and solutal Marangoni effect. In addition, the effect of PEGylation, nanoparticle concentration and substrate temperature on drop evaporation of graphene nanofluid are investigated by microscopic, optical and infrared methods. Experimental results and thermodynamic analysis can contribute to the full understanding of involved mechanism concerning evaporation performance of graphene nanofluid.

Page generated in 0.1262 seconds