• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 16
  • 16
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling of bubble and drop formation in flowing liquids in terrestrial and microgravity environments

Kim, Iee-Hwan January 1992 (has links)
No description available.
12

Comparison of experimental results and numerical predictions of drop diameter from a single submerged nozzle in a liquid-liquid system

Hamad, Faik A., Khan, M. Khurshid, Pierscionek, Barbara K., Bruun, Hans H. January 2001 (has links)
No / This paper presents a comparison of experimental results and numerical predictions of drop formation from a single submerged nozzle for a liquid-liquid system. The theoretical model is a modification of previous models used for a two-stage drop formation mechanism. The model has been tested against experimental data for kerosene drop formation in distilled water using a range of different nozzle diameters. In addition, our liquid-liquid model has been compared with both experimental and predicted results from published literature. These comparisons demonstrate that for liquid-liquid systems, the present predictions of drop diameter versus dispersed phase nozzle velocity are in overall agreement with both the present and previous experimental results. In addition, the present model predictions are more accurate than those of previous models for liquid-liquid systems.
13

Dynamics of Blood Drop Formation and Flight

Kabaliuk, Natalia January 2014 (has links)
Violent crimes involving bloodshed may result in the formation of a number of blood drops that move through air and impact onto a surface producing a bloodstain pattern. Bloodstain Pattern Analysis (BPA), the analysis of the position, distribution, size and morphology of the stains within the pattern present at a crime scene, may provide information about the events that gave rise to the bloodshed. The location of blood origin, i.e. victim’s position at the moment of wounding and (or) wound location, determination is of major interest to BPA. This study investigated the dynamics of formation and flight of blood drops commonly found at a crime scene (so-called passive, cast-off, impact and gunshot drops) with the aim to facilitate blood origin determination. Features of blood drop formation at passive dripping with correlation to dripping surface characteristics were studied experimentally. A numerical scheme for accurate blood drop flight characteristics modelling, including oscillations, deformation and disintegration, was developed and validated against a number of analytical and experimental cases with special attention to the passive blood drop oscillations and ultimate deformation at terminal velocity, cast-off and impact blood drop deformation and breakup features. This provided an efficient and accurate method for typical blood drop flight reconstruction from the blood origin to impact as well as from the bloodstain location to the possible blood origin. Factors affecting blood drop trajectory and blood origin estimation were studied using the developed scheme.
14

Drop-on-demand inkjet deposition of complex fluid on textiles

Wang, Xi 06 August 2008 (has links)
The objective of the research was to develop fundamental understanding of the process of deposition of complex mixtures by the inkjet method. The rheological properties and DOD drop formation dynamics of carbon black pigmented inkjet inks were investigated. It was found that the suspension microstructure responses to bulk motions, leading to shear rate and time dependent shear viscosity. However, DOD drop formation dynamics of highly pigmented inkjet ink and pure Newtonian fluid is similar even though shear rate up to 105 s-1 exists during inkjet jetting process. A proposed explanation for these observations is that the shearing time during DOD drop ejection is insufficient for changing and stabilizing the microstructure of the suspension. The effects of signal amplitude and jetting frequency on DOD drop formation dynamics of pure Newtonian fluids were investigated. A transition of DOD drop formation dynamics when the inkjet nozzle is switched from idle to jetting was identified. A qualitative investigation of DOD drop impaction and post-impaction behavior on inkjet paper and textiles was carried out. Dynamics of DOD drop accumulation and spreading on the substrates and final ink distribution show drastic differences between these two substrates.
15

DEVELOPMENT OF DROPWISE ADDITIVE MANUFACTURING WITH NON-BROWNIAN SUSPENSIONS: APPLICATIONS OF COMPUTER VISION AND BAYESIAN MODELING TO PROCESS DESIGN, MONITORING AND CONTROL

Andrew J. Radcliffe (9080312) 24 July 2020 (has links)
<div>In the past two decades, the pharmaceutical industry has been engaged in modernization of its drug development and manufacturing strategies, spurred onward by changing market pressures, regulatory encouragement, and technological advancement. Concomitant with these changes has been a shift toward new modalities of manufacturing in support of patient-centric medicine and on-demand production. To achieve these objectives requires manufacturing platforms which are both flexible and scalable, hence the interest in development of small-scale, continuous processes for synthesis, purification and drug product production. Traditionally, the downstream steps begin with a crystalline drug powder – the effluent of the final purification steps – and convert this to tablets or capsules through a series of batch unit operations reliant on powder processing. As an alternative, additive manufacturing technologies provide the means to circumvent difficulties associated with dry powder rheology, while being inherently capable of flexible production.</div><div>Through the combination of physical knowledge, experimental work, and data-driven methods, a framework was developed for ink formulation and process operation in drop-on-demand manufacturing with non-Brownian suspensions. Motivated by the challenges at hand, application of novel computational image analysis techniques yielded insight into the effects of non-Brownian particles and fluid properties on rheology. Furthermore, the extraction of modal and statistical information provided insight into the stochastic events which appear to play a notable role in drop formation from such suspensions. These computer vision algorithms can readily be applied by other researchers interested in the physics of drop coalescence and breakup in order to further modeling efforts.</div><div>Returning to the realm of process development to deal with challenges of monitoring and quality control initiated by suspension-based manufacturing, these machine vision algorithms were combined with Bayesian modeling to enact a probabilistic control strategy at the level of each dosage unit by utilizing the real-time image data acquired by an online process image sensor. Drawing upon a large historical database which spanned a wide range of conditions, a hierarchical modeling approach was used to incorporate the various sources of uncertainty inherent to the manufacturing process and monitoring technology, therefore providing more reliable predictions for future data at in-sample and out-of-sample conditions.</div><div>This thesis thus contributes advances in three closely linked areas: additive manufacturing of solid oral drug products, computer vision methods for event recognition in drop formation, and Bayesian hierarchical modeling to predict the probability that each dosage unit produced is within specifications.</div><div><br></div>
16

Dynamics of Bubbles and Drops in the Presence of an Electric Field

Shyam Sunder, * January 2015 (has links) (PDF)
The present thesis deals with two-phase electrohydrodynamic simulations of bubble and droplet dynamics under externally applied electric fields. We used the Coupled Level-Set and Volume-of-fluid method (CLSVOF) and two different electrohydrody-namic formulations to study the process of bubble and drop formation from orifices and needles, the interactions of two conducting drops immersed in a dielectric medium, and the oscillations of sessile drops under two different ways of applying external elec-tric field. For the process of bubble formation in dielectric liquids due to the injection of air from submerged orifices and needles, we show that a non-uniform electric field pro-duces smaller bubbles while a uniform electric field changes only the bubble shape. We further explain the reason behind the bubble volume reduction under a non-uniform electric field. We show that the distribution of the electric stresses on the bubble inter-face is such that very high electric stresses act on the bubble base due to a non-uniform electric field. This causes a premature neck formation and bubble detachment lead-ing to the formation of smaller bubbles. We also observe that the non-uniform elec-tric stresses pull the bubble interface contact line inside the needle. With oscillatory electric fields, we show that a further reduction in bubble sizes is possible, but only at certain electric field oscillation frequencies. At other frequencies, bubbles bigger than those under a constant electric field of strength equal to the amplitude of the AC electric field, are produced. We further study the bubble oscillation modes under an oscillatory electric field. We implemented a Volume-of-fluid method based charge advection scheme which is charge conservative and non-diffusive. With the help of this scheme, we were able to simulate the electrohydrodynamic interactions of conducting-dielectric fluid pairs. For two conducting drops inside a dielectric fluid, we observe that they fail to coalesce when the strength of the applied electric field is beyond a critical value. We observe that the non-coalescence between the two drops occur due to the charge transfer upon drop-drop contact. The electric forces which initially bring the two drops closer, switch direction upon charge transfer and pull the drops away from each other. The factors governing the non-coalescence are the electric conductivity of the drop’s liquid which governs the time scale of charge transfer relative to the capillary time scale and the magnitude of the electric forces relative to the capillary and the viscous forces. Similar observations are recorded for the interactions of a charged conducting drop with an interface between a dielectric fluid and a conducting fluid which is the same as the drop’s liquid. For the case of a pendant conducting drop attached to a capillary and without any influx of liquid from the capillary, we observed that the drop undergoes oscillations at lower values of electric potential when subjected to a step change in the applied electric potential. At higher values of electric potential, we observed the phenomenon of cone-jet formation which results due to the accumulation of the electric charges and thus the electric forces at the drop tip. For the formation of a pendant conducting drops from a charged capillary due to liquid injection, we observed that the drops are elongated in presence of an electric field. This happens because the free charge which appears at the drop tip is attracted towards the grounded electrode. This also leads to the formation of elongated liquid threads which connect the drop to the capillary during drop detachment. We plotted the variation of total electric charge inside the drops with respect to time and found the charge increases steeply as the drop becomes elongated and moves towards the grounded electrode. For sessile drop oscillations under an alternating electric field, two different modes of operations are studied. In the so called ‘Contact mode’ case, the droplet is placed on a dielectric coated grounded electrode and the charged needle electrode remains in direct contact with the drop as it oscillates. In the ‘Non-contact mode’ case, the drop is placed directly on the grounded electrode and electric potential is applied to a needle electrode which now remains far from the drop. We show that the drop oscillations in the contact mode are caused by concentration of electric forces near the three phase contact line where the electric charge accumulates because of the repulsion from the needle. For the non-contact mode, we observe that the electric charge is attracted by the needle towards the drop apex resulting in a concentration of the electric forces in that region. So the drop oscillates due to the electric forces acting on a region near the drop tip. We also present the variation of the total electric charge inside the drop with respect to time for the two cases studied.

Page generated in 0.0854 seconds