• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sexual Conflict in Drosophila Serrata across Populations and Environments

Colpitts, Julie Ann January 2015 (has links)
Earlier studies implicate interlocus sexual conflict as having important evolutionary consequences in Drosophila serrata but it has never been directly studied. I quantify sexual conflict and its divergence between two laboratory stocks using a full factorial manipulation of male population, female population, and level of male exposure to track longevity and fecundity of individual females. Evidence of strong sexual conflict, as well as divergence of male harm and female resistance between populations, was found. The relationship between environmental complexity and sexual conflict was then explored using a combination of behavioural observations and a factorial experiment to again track longevity and fecundity of individual females. Increased complexity was associated with decreased sexual activity and increased lifespan in females, although effects on fecundity were less clear. Overall, my studies combine to provide initial data for characterizing sexual conflict in Drosophila serrata and shed light on important considerations for its study.
2

Assessing Territoriality as a Component of Male Sexual Fitness in 'Drosophila serrata'

White, Alison 15 April 2013 (has links)
While the phenotypic effects of sexual selection have been well studied, the consequences for population mean fitness remain unclear. Additionally, there is a need to more fully characterize how various forms of inter- and intrasexual selection combine to affect the evolution of traits under sexual selection. Here, I address these issues as they relate to male territoriality in Drosophila serrata, a model system for the study of female preference for male pheromones. First, I demonstrate that territoriality occurs and is a likely component of male sexual fitness. Results from a phenotypic manipulation indicate that territorial success was also condition-dependent, and that sexual selection against low condition males tended to be stronger given a high opportunity for territory defense. Territorial success depended on body size but not on pheromones. How this and other components of male mating success interact to affect trait evolution and population mean fitness remains an important area for future study.
3

Assessing Territoriality as a Component of Male Sexual Fitness in 'Drosophila serrata'

White, Alison January 2013 (has links)
While the phenotypic effects of sexual selection have been well studied, the consequences for population mean fitness remain unclear. Additionally, there is a need to more fully characterize how various forms of inter- and intrasexual selection combine to affect the evolution of traits under sexual selection. Here, I address these issues as they relate to male territoriality in Drosophila serrata, a model system for the study of female preference for male pheromones. First, I demonstrate that territoriality occurs and is a likely component of male sexual fitness. Results from a phenotypic manipulation indicate that territorial success was also condition-dependent, and that sexual selection against low condition males tended to be stronger given a high opportunity for territory defense. Territorial success depended on body size but not on pheromones. How this and other components of male mating success interact to affect trait evolution and population mean fitness remains an important area for future study.
4

Characterizing Sexual Selection in a Wild Population of Protopiophila litigata (Diptera: Piophilidae) and Analyzing the Combined Effects of Cuticular Hydrocarbons and Wing Interference Patterns on Male Mating Success in Drosophila serrata

Godfrey, Corey January 2017 (has links)
One of the major research challenges is the ability to test selective forces in a wild population. A recent discovery of a new dipteran species, Protopiophila litigata, can enable researches to test selection in the wild. Most research has focused on mating behaviour, male mating success and senescence. In this study a small sample of wild mating and non-mating flies were collected, cuticular hydrocarbons were extracted and morphometric traits were obtained to assess the strength of sexual selection. There was significant linear sexual selection on cuticular hydrocarbons and, mid tibia length, hind tibia length and wing length. Overall, further establishes P. litigata as a model species for studying selection in the wild. Earlier studies have demonstrated strong sexual selection on male cuticular hydrocarbons in Drosophila serrata. Recently wing interference patterns have been documented to be under sexual selection in Drosophila melanogaster. A sample of cuticular hydrocarbons and wing interference pattern values were analyzed to understand the combined effects on male mating success. Cuticular hydrocarbons were under sexual selection, however wing interference patterns were not. Overall, this study confirms selection on cuticular hydrocarbons, but highlights the difficulty in accurately capturing and measuring wing interference patterns.
5

The Genetic Limits to Trait Evolution for a Suite of Sexually Selected Male Cuticular Hydrocarbons in Drosophila Serrata

Sztepanacz, Jacqueline L.P. 14 November 2011 (has links)
Directional selection is prevalent in nature yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. The genetic basis of evolutionary limits in unmanipulated populations, however, is generally not known. Given widespread pleiotropy, opposing selection on a focal trait may arise from the effects of the underlying alleles on other fitness components, generating net stabilizing selection on trait genetic variance and thus limiting evolution. Here, I look for the signature of stabilizing selection for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on CHCs, genetic variance differed between high and low fitness individuals and was greater among the low fitness males for seven of eight CHCs. Univariate tests of a difference in genetic variance were non-significant but have low power. My results implicate stabilizing selection, arising through pleiotropy, in generating a genetic limit to the evolution of CHCs in this species.
6

The Genetic Limits to Trait Evolution for a Suite of Sexually Selected Male Cuticular Hydrocarbons in Drosophila Serrata

Sztepanacz, Jacqueline L.P. 14 November 2011 (has links)
Directional selection is prevalent in nature yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. The genetic basis of evolutionary limits in unmanipulated populations, however, is generally not known. Given widespread pleiotropy, opposing selection on a focal trait may arise from the effects of the underlying alleles on other fitness components, generating net stabilizing selection on trait genetic variance and thus limiting evolution. Here, I look for the signature of stabilizing selection for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on CHCs, genetic variance differed between high and low fitness individuals and was greater among the low fitness males for seven of eight CHCs. Univariate tests of a difference in genetic variance were non-significant but have low power. My results implicate stabilizing selection, arising through pleiotropy, in generating a genetic limit to the evolution of CHCs in this species.
7

The Genetic Limits to Trait Evolution for a Suite of Sexually Selected Male Cuticular Hydrocarbons in Drosophila Serrata

Sztepanacz, Jacqueline L.P. 14 November 2011 (has links)
Directional selection is prevalent in nature yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. The genetic basis of evolutionary limits in unmanipulated populations, however, is generally not known. Given widespread pleiotropy, opposing selection on a focal trait may arise from the effects of the underlying alleles on other fitness components, generating net stabilizing selection on trait genetic variance and thus limiting evolution. Here, I look for the signature of stabilizing selection for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on CHCs, genetic variance differed between high and low fitness individuals and was greater among the low fitness males for seven of eight CHCs. Univariate tests of a difference in genetic variance were non-significant but have low power. My results implicate stabilizing selection, arising through pleiotropy, in generating a genetic limit to the evolution of CHCs in this species.
8

The Genetic Limits to Trait Evolution for a Suite of Sexually Selected Male Cuticular Hydrocarbons in Drosophila Serrata

Sztepanacz, Jacqueline L.P. January 2011 (has links)
Directional selection is prevalent in nature yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. The genetic basis of evolutionary limits in unmanipulated populations, however, is generally not known. Given widespread pleiotropy, opposing selection on a focal trait may arise from the effects of the underlying alleles on other fitness components, generating net stabilizing selection on trait genetic variance and thus limiting evolution. Here, I look for the signature of stabilizing selection for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on CHCs, genetic variance differed between high and low fitness individuals and was greater among the low fitness males for seven of eight CHCs. Univariate tests of a difference in genetic variance were non-significant but have low power. My results implicate stabilizing selection, arising through pleiotropy, in generating a genetic limit to the evolution of CHCs in this species.
9

The Quantitative Genetics of Good Genes: Fitness, Male Display, and Female Preference

Delcourt, Matthieu 12 October 2011 (has links)
The ultimate goal of my thesis is to develop a better understanding of the contribution of indirect benefits (i.e. good genes) to the evolution of female mate preferences. It is genetic variance in, and genetic correlations (covariances) among, male sexual displays, female preferences for them, and fitness that in part determine the degree to which females preferring certain male displays over others will gain an indirect benefit by having higher fitness offspring. Recent advances in quantitative genetic theory provide the mathematical means for quantifying the strength of indirect selection for female mate preferences (Kirkpatrick and Hall 2004), at least under certain conditions, but there are few empirical systems for which such data exist (Brooks and Endler 2001; Qvarnström et al. 2006). I have undertaken a classic half-sibling breeding design with the ultimate goal of estimating the specific parameters of this model in a population of the Australian fruit fly Drosophila serrata. The breeding design was performed across two environments - one to which the population was well adapted and a novel environment to which it was not - thereby also providing insight into genotype-by-environment interactions for this suite of traits and their effects on good genes indirect benefits in a novel environment. General insight is also gained into the genetic covariance of male and female fitness and the prevalence of intralocus sexual conflict, the quantitative genetic basis of female mate preferences for multiple male traits, the condition-dependence of these traits, and the genetic association between sexual displays and fitness when mutation-selection balance is inferred. My results advocate caution in the application of existing theory to quantify the strength of indirect selection, suggesting that a good genes process may be fundamentally different when the exaggeration of sexual displays is eventually halted and an equilibrium is reached between opposing selection.
10

The Quantitative Genetics of Good Genes: Fitness, Male Display, and Female Preference

Delcourt, Matthieu 12 October 2011 (has links)
The ultimate goal of my thesis is to develop a better understanding of the contribution of indirect benefits (i.e. good genes) to the evolution of female mate preferences. It is genetic variance in, and genetic correlations (covariances) among, male sexual displays, female preferences for them, and fitness that in part determine the degree to which females preferring certain male displays over others will gain an indirect benefit by having higher fitness offspring. Recent advances in quantitative genetic theory provide the mathematical means for quantifying the strength of indirect selection for female mate preferences (Kirkpatrick and Hall 2004), at least under certain conditions, but there are few empirical systems for which such data exist (Brooks and Endler 2001; Qvarnström et al. 2006). I have undertaken a classic half-sibling breeding design with the ultimate goal of estimating the specific parameters of this model in a population of the Australian fruit fly Drosophila serrata. The breeding design was performed across two environments - one to which the population was well adapted and a novel environment to which it was not - thereby also providing insight into genotype-by-environment interactions for this suite of traits and their effects on good genes indirect benefits in a novel environment. General insight is also gained into the genetic covariance of male and female fitness and the prevalence of intralocus sexual conflict, the quantitative genetic basis of female mate preferences for multiple male traits, the condition-dependence of these traits, and the genetic association between sexual displays and fitness when mutation-selection balance is inferred. My results advocate caution in the application of existing theory to quantify the strength of indirect selection, suggesting that a good genes process may be fundamentally different when the exaggeration of sexual displays is eventually halted and an equilibrium is reached between opposing selection.

Page generated in 0.0733 seconds