• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 856
  • 118
  • 79
  • 61
  • 57
  • 19
  • 16
  • 11
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 1649
  • 1649
  • 426
  • 249
  • 221
  • 163
  • 151
  • 127
  • 121
  • 121
  • 114
  • 114
  • 100
  • 98
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

The Design and Study of Lanthanide-Chelating Macromolecular Diagnostic and Delivery Agents

Bryson, Joshua Matthew 29 September 2009 (has links)
Macromolecular magnetic resonance imaging (MRI) contrast agents have unique localization and contrast enhancement properties. We have designed and studied a monodisperse paramagnetic β-cyclodextrin click cluster (Gd10) decorated with Gd-containing arms and unique contrast enhancing polymers. To synthesize Gd10, a novel alkyne-functionalized diethylenetriaminetetraacetic acid chelate was created and coupled to a per-azido-β-cyclodextrin core and chelated with Gd(III) to yield the precursor macromolecule. Luminescence measurements were carried out using an analogous structure Eu(III)-containing structure and indicated that each lanthanide has an average of 1.8 water exchange sites. Gd10 yields a high relaxivity profile (6.2 mM⁻¹ s⁻¹ per Gd(III) at 9.4 T). Gd10 shows toxicity higher than clinically used contrast agents such as Magnevist&trade in vitro in cardiomyoblast cells. No acute toxicity was observed in the rats (n = 9) and contrast enhanced image analysis indicates renal processes may be involved in clearance. The contrast enhancing polymers we developed are new macromolecular beacons that allow the delivery of nucleic acids to be visualized at different biological scales. They contain repeated oligoethyleneamines, for binding and compacting nucleic acids into nanoparticles, and Gd(III)/Eu(III) chelates. The chelated lanthanides allow the visualization of the delivery vehicle via microscopy and via magnetic resonance imaging (MRI). We demonstrate that these new delivery beacons effectively bind plasmid DNA(pDNA) and protect their cargo nucleic acids from nuclease damage. The lanthanide-chelate materials have been found to efficiently deliver pDNA into cultured cells and do not exhibit toxicity. Micrographs of cultured cells exposed to the nanoparticle complexes formed with fluorescein-labeled pDNA and the europium-chelated polymers reveal effective intracellular imaging of the delivery process. MRI of bulk cells exposed to the complexes formulated with pDNA and the gadolinium-chelated structures show bright image contrast, allowing visualization of effective intracellular delivery on the tissue-scale. Because of their versatility as imaging probes, these delivery beacons posses remarkable potential for tracking and understanding nucleic acid transfer in vitro and have promise for in vivo imaging applications. In later studies the Ln-chelating polymers were co-polymerized with dimethylgalacterate which definitively increases luciferase gene expression (up 50x enhancement) and cellular uptake (up to 2x enhancement). / Ph. D.
332

Design and Synthesis of Doxorubicin Conjugated Gold Nanoparticles as Anticancer Drug Delivery System

Xia, Long 24 June 2016 (has links)
Doxorubicin is one of the most widely used and effective anticancer agents to treat a wide spectrum of tumors. But its success in cancer therapy is greatly compromised by its cumulative dose-dependent side effects of cardiotoxicity and tumor cell resistance. For the purpose of addressing these side effects, a gold nanoparticles-based anticancer drug delivery system was designed. Five novel thiolated doxorubicin analogs were designed and synthesized and their biological activities have been evaluated. These doxorubicin analogs and the poly(ethylene glycol) (PEG) stabilizing ligands were conjugated to gold nanoparticles via formation of a gold-thiol bond. The systems were evaluated in vitro and in vivo, and the results show that controlled drug release can be achieved either by acidic conditions or by reducing agents in cancer cells, depending on the design of the thiolated drug construct. The overall drug delivery system should achieve enhanced drug accumulation and retention in cancer cells and favorable drug release kinetics, and should demonstrate therapeutic potential and the ability to address some of the current problems of doxorubicin in cancer therapy. / Master of Science
333

Pullulan w-carboxyalkanoates for Drug Nanodispersions

Rolle, Jameison Theophilus 25 September 2015 (has links)
Pullulan is an exopolysaccharide secreted extracellularly by the black yeast-like fungi Aureobasidium pullulans. Due to an alpha-(1-->6) linked maltotriose repeat unit, which interferes with hydrogen bonding and crystallization, pullulan is completely water soluble unlike cellulose. It has also been tested and shown to possess non-toxic, biodegradable, non-mutagenic and non-carcinogenic properties. Chemical modification of polysaccharides to increased hydrophobicity and increase functionality has shown great promise in drug delivery systems. Particularly in amorphous solid dispersion (ASD) formulations, hydrophobicity increases miscibility with hydrophobic, crystalline drugs and carboxy functionality provides stabilization with drug moieties and well as pH specific release. Successful synthesis of cellulose w-carboxyalkanoates have been reported and showed great promise as ASD polymers based on their ability to retard the recrystallization of the HIV drug ritonavir and antibacterial clarithromycin. However, these cellulose derivatives have limitations due to their limited water solubility. Natural pullulan is water-soluble and modification with w-carboxyalkanoate groups would provide a unique set of derivatives with increased solubility therefore stronger polymer-drug interactions in solution. We have successfully prepared novel pullulan w-carboxyalkanoates, which exhibit good solubility in polar aprotic and polar protic solvents. All derivatives exhibit high thermal stability and most recorded high glass transition temperatures. Due to unknown impact of their three dimensional structure on miscibility and stabilization of drug against crystallization, each of these polymers possesses great potential for use in various drug delivery applications. / Master of Science
334

Maleimide-thiol linkages alter the biodistribution of SN38 therapeutic microbubbles compared to biotin-avidin while preserving parity in tumoral drug delivery

Ingram, N., Abou-Saleh, R.H., Race, Amanda D., Loadman, Paul, Bushby, R.J., Evans, S.D., Coletta, P.L. 29 August 2024 (has links)
Yes / Therapeutic microbubbles (thMBs) contain drug-filled liposomes linked to microbubbles and targeted to vascular proteins. Upon the application of a destructive ultrasound trigger, drug uptake to tumour is improved. However, the structure of thMBs currently uses powerful non-covalent bonding of biotin with avidin-based proteins to link both the liposome to the microbubble (MB) and to bind the targeting antibody to the liposome-MB complex. This linkage is not currently FDA-approved, and therefore, an alternative, maleimide-thiol linkage, that is currently used in antibody-drug conjugates was examined. In a systematic manner, vascular endothelial growth factor receptor 2 (VEGFR2)-targeted MBs and thMBs using both types of linkages were examined for their ability to specifically bind to VEGFR2 in vitro and for their ultrasound imaging properties in vivo. Both showed equivalence in the production of the thMB structure, in vitro specificity of binding and safety profiles. In vivo imaging showed subtle differences for thMBs where biotin thMBs had a faster wash-in rate than thiol thMBs, but thiol thMBs were longer-lived. The drug delivery to tumours was also equivalent, but interestingly, thiol thMBs altered the biodistribution of delivery away from the lungs and towards the liver compared to biotin thMBs, which is an improvement in biosafety. / This research was funded by the EPSRC (EP/I000623/1, EP/L504993/1 and EP/P023266/1). S.D.E. is supported by the National Institute for Health Research infrastructure at Leeds.
335

Poloxamer-based nanogels as delivery systems: how structural requirements can drive their biological performance

Shriky, Banah, Vigato, A.A., Sepulveda, A.F., Machado, I.P., Ribeiro de Araujo, D. 07 August 2023 (has links)
Yes / Poloxamers or Pluronics®-based nanogels are one of the most used matrices for developing delivery systems. Due to their thermoresponsive and flexible mechanical properties, they allowed the incorporation of several molecules including drugs, biomacromolecules, lipid-derivatives, polymers, and metallic, polymeric, or lipid nanocarriers. The thermogelling mechanism is driven by micelles formation and their self-assembly as phase organizations (lamellar, hexagonal, cubic) in response to microenvironmental conditions such as temperature, osmolarity, and additives incorporated. Then, different biophysical techniques have been used for investigating those structural transitions from the mechanisms to the preferential component’s orientation and organization. Since the design of PL-based pharmaceutical formulations is driven by the choice of the polymer type, considering its physico-chemical properties, it is also relevant to highlight that factors inherent to the polymeric matrix can be strongly influenced by the presence of additives and how they are able to determine the nanogels biopharmaceuticals properties such as bioadhesion, drug loading, surface interaction behavior, dissolution, and release rate control. In this review, we discuss the general applicability of three of the main biophysical techniques used to characterize those systems, scattering techniques (small-angle X-ray and neutron scattering), rheology and Fourier transform infrared absorption spectroscopy (FTIR), connecting their supramolecular structure and insights for formulating effective therapeutic delivery systems. / The Sao Paulo Research Foundation - FAPESP (Grant 2019/20303-4; 2019/14773-8), National Council for Scientifc and Technological Development - CNPq (308819/2022-0), ERASMUS Program Fellowship, and The Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001.
336

Design, Synthesis and Biological Evaluation ofnovel lipoamino acid-based glycolipids for oral drug delivery.

Falconer, Robert A., Toth, I. January 2007 (has links)
No / A series of lipoamino acid-based glycolipids were synthesised. Suitably derivatised lipoamino acid derivatives were prepared and conjugated to monosaccharides (including glycosyl azides, isothiocyanates, thiols and sulphones) to yield novel O-, N-, S- and C-linked glycolipids in good yields. Their potential to improve the oral absorption of piperacillin is reported.
337

Novel Ultrasound Shearing-based Fabrication Method for Nanobubble Synthesis in Gene and Drug Delivery Systems

Pattilachan, Tara M 01 January 2022 (has links) (PDF)
This project introduces a novel ultrasonic shearing-based fabrication method for synthesizing nanobubbles, which can then be utilized as a platform for any theranostic applications in clinical medicine, such as drug/gene delivery systems. Our standard in situ sonochemical synthesis of nanobubbles incorporates a perfluorocarbon gas core (300 μl) and an albumin outer shell, which are then incorporated into phosphate-buffered saline (4 ml) and later sonicated with a US probe. The initial optimization phase consisted of experimenting with various amounts of human serum albumin (HSA), which stabilizes the nanobubble gas core. Of the parameters (20 mg, 40 mg, and 80 mg HSA), 40 mg HSA significantly outperformed (pin vivo imaging nanobubbles in the liver. A continuation of this project will continue to optimize and expand on the theranostic applications of the US sheared nanobubbles in vivo and ex vivo in osteoporosis and the bone.
338

Investigations into drug delivery to the eye : nanoparticle comparisons

Al-Ebini, Yousef January 2014 (has links)
Eye disorders are on the rise as a result of an ageing population, an increasing obesity problem and a growth in the number of diabetic patients. Conventional ophthalmic formulations do not maintain therapeutic drug concentration in the target tissues for a long duration due to the physiological and anatomical eye barriers. Novel delivery systems such as nanoparticles have been explored to enhance the delivery of therapeutic agents to the eye. These delivery systems have in general been assessed using in-vivo animal models, despite ethical concerns for animal wellbeing. The aims of this thesis were to synthesise and characterise four amphiphilic polymers, subsequently prepare and characterise four nano sized polymeric self-assemblies loaded with triamcinolone acetonide (TA), develop an in-vitro porcine eye model and to evaluate the permeation of nano sized self-assemblies using the developed model. Four comb-shaped amphiphilic polymers (Pa5, Pa5-MPEG, Ch5 and Da10) were synthesised with a high yield (>81%) and good reproducibility. These polymers formed spontaneous positive self-assemblies in aqueous media (114-314 nm). The mean hydrodynamic diameters of the positive spontaneous self-assemblies entrapping TA were in the range of 200–334 nm loading high concentrations (455-1263 μg mL-1) of TA, much greater than the TA inherent aqueous solubility or concentrations achieved using conventional solubilisers. A porcine in-vitro eye model was developed to assess drug permeation through anterior and posterior ocular tissues. The model was partially validated using tritiated water and a series of hydrophilic markers with increasing molecular weights. The integrity of porcine ocular tissue was checked by monitoring the permeation of tritiated water to ensure the membrane intactness. Tritiated water permeation at 15 min was exploited as a potential method to normalise drug flux, as tritiated water percentage permeation at 15 min had an inverse relationship with tissue thickness (R2 = 0.66), to reduce the inherent variability between tissue samples thus increasing the accuracy of the in-vitro eye model. Four markers (fluorescein sodium salt, 4, 10 and 20 kDa FITC-dextran) were used for the purpose of investigating the effect of increasing molecular weight on ocular tissue permeability. The permeability of the markers displayed an inverse relationship and abrupt decline with Mw in terms of the permeability through scleral and corneal tissues of human and porcine and the molecular weight of the markers. The developed porcine in-vitro eye model showed good correlation with the human in-vitro model providing strong evidence it can be used to screen potential formulations before testing in-vivo. The TA loaded self-assemblies and a few chemical enhancers (glutamic acid, tween 80, chitosan, Pa5 and elevate temperature (45 °C)), selected to assist drug delivery via two routes (paracellular and transcellular), were tested using the developed in-vitro eye model. The results showed there was no marker permeation enhancement effect in porcine and human ocular tissues using chemical enhancers. In summary, a porcine in-vitro eye model was developed to assess hydrophobic and hydrophilic penetrant permeation across anterior and posterior ocular tissues. The porcine in-vitro eye model showed good correlation with the human in-vitro model providing strong evidence that the porcine in-vitro eye model can be used to screen potential formulations before testing in-vivo using the porcine model which ultimately might correlate well with the in-vivo human responses. Although TA self-assemblies did not significantly increase drug flux through human or porcine scleral tissues, it might be of interest for ophthalmic topically administered formulations due to their positive charge and small nano size.
339

Mechanistic Profiling of Novel Wafer Technology Developed for Rate-Modulated Oramucosal Drug Delivery

Patel, Rupal 01 November 2006 (has links)
Student Number ; 9901384G - MPharm dissertation - School of Pharmacy and Pharmacology - Faculty of Health Sciences / A lyophilized polymeric wafer system was formulated for the provision of rapid drug release in the oramucosal region. Lyophilization produced a porous sponge-like matrix which allowed simulated saliva to be rapidly imbibed into the hydrophilic structure. This surge of simulated saliva resulted in rapid disintegration of the wafer. Hydroxypropyl cellulose (HPC) was selected as the polymeric platform based on its low gelation potential. Other excipients incorporated into the system were lactose and mannitol as diluents, and glycine as a collapse protectant. A Face Centred Central Composite Design was chosen to establish the significant effects of the independent formulation variables on the physicochemical and physicomechanical properties of the wafer. The formulation variables investigated were, HPC concentration, type of diluent (lactose, mannitol or mixture), concentration of diluent, quantity of glycine and fill volume. An analysis of these variables elucidated the influential factors that may be controlled to form an ‘ideal’ wafer. The concentration of HPC significantly affected the disintegration rate (p=0.003), influx of simulated saliva (p=0.011) and friability (p=0.023). The quantity of diluent present in the system also had significant effect on matrix tolerance (p=0.029) and friability (p=0.032). Statistical optimization was undertaken using stepwise forward and backward regression, and Artificial Neural Networks to predict the ideal combination of the independent variables that would produce an ideal formulation. This wafer was required to produce a matrix disintegration of 3.33%/s, friability of 0.1% loss and maximum matrix resilience. Formulations manufactured with and without model drug, diphenhydramine hydrochloride, reflected no significant differences in their physicomechanical and physicochemical properties. In an attempt to expand the scope of this technology, a preliminary investigation was undertaken to develop a prolonged release wafer system. This was successfully achieved trough the application of crosslinking technology. It was possible to achieve drug released over a period of 6 hours.
340

Study of chitosan-based nanocarrier for drug delivery.

January 2011 (has links)
Ng, Yiu Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 99-114). / Abstracts in English and Chinese. / Acknowledgements --- p.2 / Abstract --- p.3 / 摘要 --- p.5 / Content --- p.6 / List of abbreviations and symbols --- p.10 / Chapter Chapter 1 - --- Introduction --- p.13 / Chapter 1.1 --- Introduction to nanoparticles (NPs) --- p.13 / Chapter 1.2 --- How to treat solid cancers using nanoparticle drugs --- p.17 / Chapter 1.3 --- What is Chitosan (CS)? --- p.22 / Chapter 1.4 --- Possible peptide candidates to be trapped --- p.26 / Chapter 1.4.1 --- Luffin PI - Ribosome inactivating peptide --- p.26 / Chapter 1.4.2 --- Buforin lib (Bllb) - Antimicrobial peptide --- p.27 / Chapter 1.5 --- Aims of study --- p.30 / Chapter Chapter 2 - --- Materials and Methods --- p.31 / Chapter 2.1 --- Materials --- p.31 / Chapter 2.2 --- Methods --- p.31 / Chapter 2.2.1 --- Construction and expression of Luffin P1 --- p.31 / Chapter 2.2.2 --- Circular dichroism spectroscopy --- p.32 / Chapter 2.2.3 --- Static light scattering --- p.33 / Chapter 2.2.4 --- In vitro N-glycosidase assay --- p.34 / Chapter 2.2.5 --- Preparation of CS particles --- p.34 / Chapter 2.2.5.1 --- Preparation of positive CS NPs --- p.34 / Chapter 2.2.5.2 --- Preparation of negative CS NPs --- p.35 / Chapter 2.2.5.3 --- Preparation of buforin lib incorporated NPs --- p.35 / Chapter 2.2.5.4 --- Preparation of Cy5 incorporated NPs --- p.36 / Chapter 2.2.6 --- Characterization of CS NPs --- p.36 / Chapter 2.2.7 --- Buforin lib (Bllb) encapsulation efficiency and loading capacity --- p.36 / Chapter 2.2.8 --- In vitro release study --- p.37 / Chapter 2.2.9 --- Confocal Microscopy --- p.37 / Chapter 2.2.10 --- Cytotoxicity assay --- p.38 / Chapter 2.2.11 --- Statistical analysis --- p.38 / Chapter Chapter 3 - --- "Cloning, expression, purification and structural characterization of Luffin PI" --- p.39 / Chapter 3.1 --- Introduction --- p.39 / Chapter 3.2 --- Results --- p.41 / Chapter 3.2.1 --- Construction of Luffin PI plasmid --- p.41 / Chapter 3.2.2 --- Expression and purification of Luffin PI --- p.41 / Chapter 3.3.3 --- Molecular weight and secondary structure determination of Luffin PI --- p.43 / Chapter 3.3.4 --- 3D solution structure of Luffin PI --- p.45 / Chapter 3.3.5 --- In vitro N-glycosidase activity of Luffin PI --- p.49 / Chapter 3.3 --- Discussion --- p.51 / Chapter Chapter 4 - --- Generation of positively charged CS particles and Bllb incorporation --- p.60 / Chapter 4.1 --- Introduction --- p.60 / Chapter 4.2 --- Results --- p.62 / Chapter 4.2.1 --- Positively charged CS NPs generation --- p.62 / Chapter 4.2.2 --- Bllb incorporated +ve CS NPs generation --- p.68 / Chapter 4.2.3 --- In vitro release study --- p.70 / Chapter 4.2.4 --- In vitro cytotoxicity test --- p.72 / Chapter 4.3 --- Discussion --- p.74 / Chapter Chapter 5 - --- Generation of negatively charged CS particles and Bllb incorporation --- p.83 / Chapter 5.1 --- Introduction --- p.83 / Chapter 5.2 --- Results --- p.85 / Chapter 5.2.1 --- -ve CS NPs generation --- p.85 / Chapter 5.2.2 --- -ve CS-Bllb NPs generation --- p.88 / Chapter 5.2.3 --- In vitro release study --- p.91 / Chapter 5.2.4 --- Localization study of -ve CS-Bllb NPs --- p.93 / Chapter 5.2.5 --- In vitro cytotoxicity test --- p.96 / Chapter 5.3 --- Discussion --- p.98 / Chapter Chapter 6 - --- Conclusion and future work --- p.108 / Copyright --- p.110 / References --- p.111

Page generated in 0.0564 seconds