• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE IMPACT OF HUMAN PRACTICES ON FOREST REMNANTS: PEOPLE AND CONSERVATION IN A SMALL NATURE RESERVE IN WESTERN NICARAGUA

Barahona, Tupac A. 11 October 2001 (has links)
No description available.
2

Tree Diameter Growth : Variations And Demographic Niches In A Tropical Dry Forest Of Southern India

Nath, Cheryl D 07 1900 (has links)
Tree growth influences forest community dynamics and responses to environmental variations, but currently is not well understood. Tree growth in highly diverse wet tropical forests have been well studied and characterised compared to the species-poor dry tropical forests. Thus, it is not clear if growth rates and community dynamics of dry forests are similar to those of wet forests, given the longer dry season, greater rainfall variability, more open canopy and lower number of species in dry forests. This thesis focuses on identifying important factors that influence tree diameter growth rates in the dry tropical forest at Mudumalai, southern India, and also compares growth patterns at this dry forest with those at moister forests. The thesis thus contributes towards closing the gap in understanding of tree growth patterns across the tropics. An initial analysis involving matrix-based population projections of four common canopy species at Mudumalai showed that variations in diameter growth have the potential to drastically modify population trajectories of dominant species. Thus the main focus of this thesis is aimed at identifying the important intrinsic and extrinsic factors affecting growth in this dry forest, as this information could be useful for future management of the forest. The second important aim of the thesis was to find out if growth rates are influenced by different sets of factors in tropical dry versus moist forests. A large permanent 50ha plot vegetation monitoring plot was set up in 1988-89 in the Mudumalai dry deciduous forest, and was subsequently monitored annually by staff of the Centre for Ecological Sciences. Data used in this thesis represent a 12-year interval between 1988 and 2000. Girth measurements were obtained from all woody tree stems ≥1cm in diameter every four years during this 12 year interval, which provided three census intervals of diameter increment data on >13,000 trees. For the comparison between dry and moist deciduous forests, data were obtained from a similar large plot maintained and monitored at the Barro Colorado Island (BCI) in Panama. Influences of the intrinsic factors, tree size, individual identity, species identity and growth form, were examined using t-tests, Wilcoxon signed ranks tests, linear regressions, analysis of variance (ANOVA), principal components analysis (PCA) and cluster analysis. Among the intrinsic factors tested, species identity explained approximately 20% of growth rates at the community level, while tree diameter explained less of growth variation, and growth form had a minor influence on growth. Growth rates also were examined for variations across the three census intervals, and for relationships with rainfall and survival from fire. Statistical tests included t-tests, Wilcoxon and other non-parametric sign tests, logistic regression and ANOVA. Most species and individuals showed significant reductions of growth in the second census interval (1992-1996), and growth rates of most trees were positively related to rainfall. Growth rate variations generally were not related to survival from fire, and few species were capable of escaping fire mortality by fast growth. Spatial environmental influences were tested in the commonest fifteen species, using five habitat categories, local elevation, slope, aspect, and the biotic neighbourhood variables of local conspecific and heterospecific density. Statistical tests included analysis of covariance, multiple linear regression and redundancy analysis. The tests were quadrat-based or individual-based, and species' growth responses were tested at different levels of distance and spatial scale. Topographic features and habitat categories had ephemeral effects on species growth. Only the most dominant species, Lagerstroemia microcarpa, showed consistent conspecific neighbour density effects. Redundancy analysis using a subset of common species and environmental factors did not reveal common growth responses to spatial environmental factors. Comparison of factors influencing growth at Mudumalai versus at BCI using multiple factor ANOVA and multiple linear regressions showed a similar influence of temporal variation at the two sites, but stronger and more widespread influence of tree size (diameter) at BCI. The greater influence of tree size at BCI may be related to greater light limitation in this dense moist forest. Spatial environmental factors had weak influences at both plots. Species were less differentiated from each other at the more diverse BCI plot compared to the relatively species-poor Mudumalai plot, suggesting that species' growth niches may be weakly related to diversity across tropical forests. Overall the results showed that among the factors tested species identity and census intervals were the most important influences on diameter growth at the Mudumalai dry deciduous forest. Tree diameter was less important and less consistent in affecting growth at the Mudumalai dry forest, contrary to expectations based on moist tropical forests where this relationship has been established previously. When comparing Mudumalai and BCI, the relative importance of different factors was different at the two sites, and the most important difference was a dominant influence of light limitation at the wetter forest in Panama. In terms of management applications, this study showed that fires at Mudumalai might be an inescapable source of mortality for many vulnerable species, and improved fire management is crucial for long term survival of species in this dry forest. At a larger scale, light and other environmental variables were found to influence growth differently at Mudumalai compared to BCI. This suggests that location-specific responses may be important for projections of tree biomass and carbon sequestration, especially under future climatic change scenarios.

Page generated in 0.0721 seconds