• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Environmental Performance of Coal Slag and Garnet as Abrasives

Datar, Sanjay 19 December 2003 (has links)
This study was aimed at understanding the environmental performance of two abrasives, coal slag and garnet which are commonly used by shipyards and many other industries in surface preparation of metallic surfaces. Environmental performance evaluated in this study included, (1) productivity (ft2/hr), (2) consumption and or used-abrasive generation rate (ton/2000 ft2; lb/ ft2), (3) particulate emission factors (mg/ft2; mg/lb; lb/lb; lb/kg; lb/ton). In order to achieve the study objectives, an emission test facility was built and necessary equipment and materials were procured. Blasting was performed on rusted steel panels inside the test facility and emissions were measured using EPA Source Test Method to quantify particulate emissions. By measuring the area cleaned, blasting time, and the abrasive consumed, environmental performance of coal slag and garnet was evaluated. Simple mathematical models were developed to predict performance based on feed rate and blast pressure. Garnet was observed to be more productive, less consuming, and more environmentally-friendly compared to coal slag. These study findings will valuable in reducing costs, improving productivity, and protecting the environment.
2

Evaluation of Productivity, Consumption, and Uncontrolled Total Particulate Matter Emission Factors of Recyclable Abrasives

Sangameswaran, Sivaramakrishnan 22 May 2006 (has links)
Dry abrasive blasting is a commonly used surface preparation operation by many process industries to clean up metallic surfaces and achieve surface finishes suitable for future adhesion. Abrasives used in this process can be recyclable or expendable. This study was undertaken to evaluate the performance of three recyclable abrasives: garnet, barshot and steel grit/shot in terms of productivity (area cleaned per unit time), consumption (amount of abrasive used per unit area cleaned) and uncontrolled total particulate matter (TPM) emission factors (in terms of mass of pollutant emitted per unit area cleaned and mass of pollutant emitted per unit mass of abrasive consumed). Though there have been various attempts in the past to evaluate the performance of these abrasives, there has not been a streamlined approach to evaluate these parameters in the commonly used range of process conditions, or to identify and model the influences of key process variables on these performance parameters. The first step in this study was to evaluate the performance of these three abrasives in blasting painted steel panels under enclosed blasting conditions and using USEPA recommended protocols. The second step was to model the influences of blast pressure and abrasive feed rate, two most critical parameters on productivity, consumption and emission factors. Two and three dimensional models were obtained using multiple linear regression techniques to express productivity, consumption and TPM emission factors in terms of blast pressure and abrasive feed rate. Barshot was found to have high productivities over all and steel grit/shot demonstrated the least emission potential at almost all of the tested pressure and feed rate conditions. The data will help fill the gaps in literature currently available for dry abrasive blasting performance. The models obtained will help industries, the research community and the regulatory agencies to make accurate estimates of the performance parameters. Estimating productivity and consumption will help industries identify best management practices by optimizing the process conditions to achieve high productivity and low consumption rates. Emission factor determination will help in reducing the emissions to the atmosphere by choosing process conditions corresponding to minimum emissions. The performance parameters once optimized can result in reduction in material, labor, energy, emission and disposal costs, lower resource utilization and hence reduction in overall life cycle costs of dry abrasive process. The developed models will help industries in making environmentally preferable purchases thereby promoting source reduction options. PM emissions estimated using the models presented here will aid studies on health risk associated with inhalation of atmospheric PM.
3

Environmental Performance of Copper Slag and Barshot as Abrasives

Potana, Sandhya Naidu 20 May 2005 (has links)
The basic objective of this study was to evaluate the environmental performance of two abrasives Copper Slag and Barshot in terms of productivity (in terms of area cleaned- ft2/hr), consumption and or used-abrasive generation rate (of the abrasive- ton/2000ft2; lb/ft2) and particulate emissions (mg/ft2; mg/lb; lb/lb; lb/kg; lb/ton). This would help in evaluating the clean technologies for dry abrasive blasting and would help shipyards to optimize the productivity and minimize the emissions by choosing the best combinations reported in this study to their conditions appropriately. This project is a joint effort between the Gulf Coast Region Maritime technology Center (GCRMTC) and USEPA. It was undertaken to simulate actual blasting operations conducted at shipyards under enclosed, un-controlled conditions on plates similar to steel plates commonly blasted at shipyards.

Page generated in 0.0883 seconds