Spelling suggestions: "subject:"cry out."" "subject:"bry out.""
1 |
Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid LayersKoehler, Timothy P. 02 October 2007 (has links)
Thin liquid layers have been proposed for heat extraction and protection of the solid surfaces of divertors in magnetic fusion reactors. A number of conceptual designs for plasma-facing components (PFC) use stationary and flowing liquid layers as a renewable first wall for reactor chambers to remove heat and shield solid surfaces from damaging radiation while maintaining acceptable plasma purity levels. Such liquid-protected PFC have the potential to make fusion more commercially attractive by increasing reactor lifetimes and decreasing failure rates. The results of this research will help identify the parameter ranges for successful operation of such protection schemes.
This thesis investigates the thermocapillary behavior of axisymmetric horizontal liquid layers with initial heights from 0.27 to 3.0 mm. A negative radial temperature gradient is imposed at the bottom of the liquid layer. Experimental, numerical and asymptotic analyses were carried out for thin layers where buoyancy forces are negligible. A novel asymptotic solution for this axisymmetric geometry was derived from the previous two-dimensional long-wave analysis by Sen et al. (1982). A numerical simulation using the level contour reconstruction method was used to follow the evolution of the liquid-gas interface above an axisymmetric non-isothermal solid surface. Experimental validation of the theoretical and numerical studies was performed using silicone oils of various viscosities (μ = 0.48 × 10-2 9.6 × 10-2 N s/m2). Two measurement techniques, a needle contact method and laser-confocal displacement method, were employed to obtain height profiles for applied temperature differences up to 65°C. Finally, reflectance shadowgraphy was used to visualize free-surface deformation and classify flow regimes in thick layers, where the assumptions of negligible buoyancy and axisymmetric flow are no longer valid. The results of this investigation will allow designers to determine operating windows for successful implementation of liquid-protected PFC.
|
2 |
Flow boiling of ammonia and propane in mini channelsMaqbool, Muhammad Hamayun January 2012 (has links)
The environmental concerns in recent times have grown especially after signing Montreal protocol. In the last ten years, researchers have focussed mainly on understanding the boiling and condensation phenomena of HFC refrigerants in minichannels. As global warming concerns are growing day by day, due to high global warming potential, HFCs are not the ultimate option. In the near future, HFCs will probably be replaced by environmentally friendly refrigerants. Therefore, to find the potential replacements of HFCs and also to get a deeper understanding of the boiling phenomena in minichannels, more and more fluids having low GWP (Global Warming Potential) and ODP (Ozone Depletion Potential) should be tested. Recent efforts to protect the environment have led to a growing interest for natural refrigerants. However in the literature, flow boiling data of natural refrigerants in minichannels are scarce. To meet the environmental concerns and to understand the behaviour of natural refrigerants in minichannels and the performance compared to HFCs, flow boiling experiments in single circular vertical minichannels of internal diameters of 1.70 and 1.224 mm were performed using ammonia and propane as working fluids. Flow boiling heat transfer results of ammonia and propane with 1.70 mm channel showed that the heat transfer coefficient was a function of heat flux and the effect of mass flux was insignificant. The heat transfer coefficient of ammonia in 1.224 mm was dependent on heat flux at low vapour qualities then a clear dependence of the heat transfer coefficient on the mass flux was observed at higher vapour qualities. The heat transfer results of ammonia and propane were compared with well known correlations and among them Cooper (1989) correlation in case of ammonia and Liu and Winterton (1991) and Cooper (1984) pool boiling correlations in case of propane best predicted the experimental heat transfer data. Results of the two phase pressure drop studies of ammonia and propane showed that the two phase pressure drop increased with the increase of mass flux, with the increase of heat flux and with the decrease of saturation temperature. The comparison of the two phase pressure drop experimental data with well known predicting models showed that none of the correlations predicted the ammonia data well and that Müller Steinhagen and Heck (1986) was well in agreement with the propane data. Dryout of propane in 1.70 mm and 1.224 mm internal diameter channels was also investigated. Dryout heat flux was observed to increase with the increase of mass flux, with the decrease of vapour quality and with the increase of internal diameter. The effect of saturation temperature on the dryout heat flux was insignificant. The experimental dryout data were compared with macro and micro scale correlations and among them Bowring (1972) and Callizo et al. (2010a) gave best predictions. The heat transfer and pressure drop results of ammonia and propane and dryout results of propane were compared with R134a data taken on the same test rig by Owhaib (2007) and Ali (2010). The comparison of heat transfer showed that the heat transfer coefficient was a function of heat flux and the effect of mass flux was insignificant in all tested conditions except ammonia in 1.224 mm tube where the heat transfer coefficient was dependent on heat flux at lower vapour qualities and a clear dependence of mass flux was observed at higher vapour qualities. The heat transfer data of ammonia, propane and R134a were compared with correlations and among them Cooper (1989) correlation gave best predictions. The comparison of pressure drop results showed that the two phase pressure drop of all fluids was increased with the increase of mass flux, with the increase of heat flux and with the decrease of saturation temperature. At equal heat flux and mass flux, the two phase pressure drop of ammonia was increased with the decrease of internal diameter but the diametric effects of R134a were unclear. Müller Steinhagen and Heck (1986) and Zhang and Webb (2001) best predicted the experimental data of two phase pressure drop of ammonia, propane and R134a among the correlations considered for comparison. The dryout data of propane were also compared with dryout data of R134a and it was observed that the dryout heat flux of propane and R134a increased with the increase of mass flux, with the decrease of vapour quality and with the increase of internal diameter. The effect of saturation temperature on the dryout heat flux of propane and R134a was insignificant. The correlation of Bowring (1972) for conventional channels and the microscale correlation of Callizo et al. (2010a) were among the correlations which gave best predictions of experimental data of dryout. / QC 20120210
|
3 |
Experimental Heat Transfer, pressure drop, and Flow Visualization of R-134a in Vertical Mini/Micro TubesOwhaib, Wahib January 2007 (has links)
For the application of minichannel heat exchangers, it is necessary to have accurate design tools for predicting heat transfer and pressure drop. Until recently, this type of heat exchangers was not well studied, and in the scientific literature there were large discrepancies between results reported by different investigators. The present thesis aims to add to the knowledge of the fundamentals of single- and two-phase flow heat transfer and pressure drop in narrow channels, thereby aiding in the development of this new, interesting technology with the possibility of decreasing the size of electronics through better cooling, and of increasing the energy efficiency of thermal processes and thermodynamic cycles through enhanced heat transfer. A comprehensive experimental single-phase flow and saturated flow boiling heat transfer and pressure drop study has been carried out on vertical stainless steel tubes with inner diameters of 1.700, 1.224 and 0.826 mm, using R-134a as the test fluid. The heat transfer and pressure drop results were compared both to conventional correlations developed for larger diameter channels and to correlations developed specifically for microscale geometries. Contrary to many previous investigations, this study has shown that the test data agree well with single-phase heat transfer and friction factor correlations known to be accurate for larger channels, thus expanding their ranges to cover mini/microchannel geometries. The main part of the study concerns saturated flow boiling heat transfer and pressure drop. Tests with the same stainless steel tubes showed that the heat transfer is strongly dependent on heat flux, but only weakly dependent on mass flux and vapor fraction (up to the location of dryout). This behavior is usually taken to indicate a dominant influence of nucleate boiling, and indicates that the boiling mechanism is strongly related to that in nucleate boiling. The test data for boiling heat transfer was compared to several correlations from the literature, both for macro- and mini-channels. A new correlation for saturated flow boiling heat transfer of refrigerant R-134a correlation was obtained based on the present experimental data. This correlation predicts the presented data with a mean absolute deviation of 8%. The frictional pressure drop results were compared to both macro- and mini channel correlations available from the literature. The correlation suggested by Qu and Mudawar (2003) gave the best prediction to the frictional two-phase pressure drop within the studied ranges. A unique visualization study of saturated flow boiling characteristics in a vertical 1.332 mm inner diameter quartz tube, coated with a transparent heater has also been conducted. The complete evaporation process in a heated circular mini-channel has been studied visually in detail using high speed CCD camera. The study revealed the developments of the flow patterns and the behavior from bubble nucleation to the dry out of the liquid film. The bubble departure frequency, diameter, growth rate, and velocity were determined by analyzing the images. Finally, a flow pattern map for boiling flow in microchannels has been developed based on the test data. / QC 20100812
|
Page generated in 0.4547 seconds