• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 2
  • Tagged with
  • 29
  • 29
  • 29
  • 28
  • 28
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Radon Ventilation on Indoor Air Quality and Building Energy saving

Akbari, Keramatollah January 2009 (has links)
<p>Industrial living is caused much people do live and work in closed and confined places; offices and residential buildings. This is why in this new world more fresh air which is generally provided by forced ventilation plays a vital role in living of human being. Furthermore because of many different indoor pollutants, like radon and artificial pollutants, the amount of fresh air and in turn the energy consumption has increased. This energy consumption related to ventilation has reached up to about 30 percent of energy used of building section. So making interaction between indoor air quality (IAQ) and optimization of energy saving is a necessary work.  Radon as a natural pollutant is occurred in environment and in many countries threatens people health whereas is called the second causes of cancer. For reducing radon concentration in residential building at the acceptable level forced ventilation is used usually. Ventilation can improve IAQ but in the other side would increase the energy consumption in building sector and just now the contribution of ventilation exceeds up 50 percent of building sector's share. The aim of this thesis is to study the impact of ventilation on indoor radon by using Computational Fluid Dynamics (CFD) to achieve indoor air quality and energy efficiency. Application of CFD as a new technology, because of its cost and time savings, and on the other side, of its flexibility and precision is  increasingly grown and can be used as a very important and valuable tool for the prediction and measurement of radon distribution in a ventilated building . Currently, measurement techniques and proposed standards and regulations of indoor pollutants and ventilation, particularly related to indoor radon cannot be able to provide a secure, safe and energy efficient indoor climate. This is why the indoor airflow distribution is very complex and with changing building geometry and operation condition, the treatment of air flow pattern, substantially would be changed, whereas the rules are usually independent of the buildings features. Furthermore, the indoor standards and regulations are based on average amount of pollutants in a room, whereas the pollutant distributions aren't identical and are varied throughout the room. Then the current techniques aren't so exactly valuable and acceptable.</p><p>From different methods which is privilege to control pollutants, ventilation method is applicable in existing buildings. Designing effective ventilation can reduce radon concentration to very level low with regarding energy conservation remarks.</p><p> </p><p>This thesis presents results from simulation studies on ventilation and radon mitigation in residential buildings, in view points of indoor air quality and energy savings. The CFD technique is applied to predict, visualize and calculate of mixture radon-air flow. The distribution of indoor radon concentration, air velocity and room temperature also have considered together for achieving indoor air quality and energy saving. The results are also compared with the experimental data and related previous works.</p><p> </p><p>It was found that with increasing ventilation rate, the radon concentration is decreased, but the location of ventilation system is also important. From the simulation results, it is observed that within the ventilated room, there are some zones, which are good for living and somewhere is more polluted. The traditional radon detectors basically show the average value of radon content in 1m­<sup>3</sup> of air. That is why detector measuring is not exact and safe.</p><p> </p><p>Simulation results proved that floor heat can be supported ventilation effect and speed up the mixture movement. Floor heating reinforces the buoyancy effect, which is useful to reduce radon content in the floor (seating area) and then lower ventilation rate can be applied.</p>
2

Analysis of a new district heating line : Evaluation of heat losses and hydraulic facilities

Sanchez, Javier January 2008 (has links)
<p>The aim of the project is to analyze the enlargement of the district heating line located in Gävle, evaluating the hydraulic facilities and calculating the heat losses with different insulation thicknesses to choose the best insulation thickness for the pipes. To choose the best thickness, different insulation thicknesses have been evaluated calculating the heat losses for each insulation thickness. To manage the heat losses problem, the pipe length has been divided into three</p><p>stretches, underground pipe, sea pipe and air pipe. These three stretches have different boundary conditions, and each stretch has been calculated separately. The best thermal solution is choosing the insulation of 0.5m of thickness, but the best thermal solution is not the best solution for this project due to the elevated cost of this thickness in one of the stretches of the line. The pipe crossing the seahas to be on the bottom and to keep the pipe on the bottom concrete is going to be added. The quantity of concrete needed depends on the floatability of the pipe and specifically depends on the insulation thickness. The insulation is a porous material and its density is very small, therefore it has a high floatability. The final</p><p>selection is a multi-thickness insulation, with different insulation thicknesses in the different stretches, 0.6m of thickness in the underground and air pipe and 0.3m of thickness in the sea pipe. With this configuration the heat losses are quite close to the optimum case. The purpose in the hydraulic study has been quantifying the start pressure in the new line to fulfil the energy demand in the worst point of the line. With 320kPa at the start of line, the pressure in the worst point is enough to fulfil the nowadays</p><p>demand, 3MW, and in the future when this line will be enlarged and the demand increased to 20MW, the pressure at the start of the line to ensure the requested pressure of 250kPa in the worst point should reach more than 380kPa. Having such pressure is not recommended to avoid the pressure hammer and to build a new pumping station after the sea pipe is recommended.</p>
3

Impact of Radon Ventilation on Indoor Air Quality and Building Energy saving

Akbari, Keramatollah January 2009 (has links)
Industrial living is caused much people do live and work in closed and confined places; offices and residential buildings. This is why in this new world more fresh air which is generally provided by forced ventilation plays a vital role in living of human being. Furthermore because of many different indoor pollutants, like radon and artificial pollutants, the amount of fresh air and in turn the energy consumption has increased. This energy consumption related to ventilation has reached up to about 30 percent of energy used of building section. So making interaction between indoor air quality (IAQ) and optimization of energy saving is a necessary work.  Radon as a natural pollutant is occurred in environment and in many countries threatens people health whereas is called the second causes of cancer. For reducing radon concentration in residential building at the acceptable level forced ventilation is used usually. Ventilation can improve IAQ but in the other side would increase the energy consumption in building sector and just now the contribution of ventilation exceeds up 50 percent of building sector's share. The aim of this thesis is to study the impact of ventilation on indoor radon by using Computational Fluid Dynamics (CFD) to achieve indoor air quality and energy efficiency. Application of CFD as a new technology, because of its cost and time savings, and on the other side, of its flexibility and precision is  increasingly grown and can be used as a very important and valuable tool for the prediction and measurement of radon distribution in a ventilated building . Currently, measurement techniques and proposed standards and regulations of indoor pollutants and ventilation, particularly related to indoor radon cannot be able to provide a secure, safe and energy efficient indoor climate. This is why the indoor airflow distribution is very complex and with changing building geometry and operation condition, the treatment of air flow pattern, substantially would be changed, whereas the rules are usually independent of the buildings features. Furthermore, the indoor standards and regulations are based on average amount of pollutants in a room, whereas the pollutant distributions aren't identical and are varied throughout the room. Then the current techniques aren't so exactly valuable and acceptable. From different methods which is privilege to control pollutants, ventilation method is applicable in existing buildings. Designing effective ventilation can reduce radon concentration to very level low with regarding energy conservation remarks.   This thesis presents results from simulation studies on ventilation and radon mitigation in residential buildings, in view points of indoor air quality and energy savings. The CFD technique is applied to predict, visualize and calculate of mixture radon-air flow. The distribution of indoor radon concentration, air velocity and room temperature also have considered together for achieving indoor air quality and energy saving. The results are also compared with the experimental data and related previous works.   It was found that with increasing ventilation rate, the radon concentration is decreased, but the location of ventilation system is also important. From the simulation results, it is observed that within the ventilated room, there are some zones, which are good for living and somewhere is more polluted. The traditional radon detectors basically show the average value of radon content in 1m­3 of air. That is why detector measuring is not exact and safe.   Simulation results proved that floor heat can be supported ventilation effect and speed up the mixture movement. Floor heating reinforces the buoyancy effect, which is useful to reduce radon content in the floor (seating area) and then lower ventilation rate can be applied.
4

Numerical Analysis of Partial Admission in Axial Turbines

Baagherzadeh Hushmandi, Narmin January 2010 (has links)
HTML clipboard Numerical analysis of partial admission in axial turbines is performed in this work. Geometrical details of an existing two stage turbine facility with low reaction blades is used for this purpose. For validation of the numerical results, experimental measurements of one partial admission configuration at design point was used. The partial admission turbine with single blockage had unsymmetrical shape; therefore the full annulus of the turbine had to be modeled numerically. The numerical grid included the full annulus geometry together with the disc gaps and rotor shrouds. Importance of various parameters in accurate modeling of the unsteady flow field of partial admission turbines was assessed. Two simpler models were selected to study the effect of accurate modeling of radial distribution of flow parameters. In the first numerical model, the computational grid was two dimensional and the radial distribution of flow parameters was neglected. The second case was three-dimensional and full blades’ span height was modeled but the leakage flows at disc cavity and rotor shroud were neglected. Detailed validation of the results from various computational models with the experimental data showed that modeling of the leakage flow at disc cavities and rotor shroud of partial admission turbines has substantial importance in accuracy of numerical computations. Comparison of the results from two computational models with varying inlet extension showed that modeling of the inlet cone has considerable importance in accuracy of results but with increased computational cost. Partial admission turbine with admission degree of  ε = 0.524 in one blocked arc and two opposing blocked arcs were tested. Results showed that blocking the inlet annulus in one single arc produce better overall efficiency compared to the two blocked arc model. Effect of varying axial gap distance between the first stage stator and rotor rows was also tested numerically for the partial admission turbine with admission degree of  ε = 0.726. Results showed higher efficiency for the reduced axial gap model. Computations showed that the main flow leave the blade path down to the disc cavity and re-enter into the flow channel downstream the blockage, this flow would pass the rotor with very low efficiency. First stage rotor blades are subject to large unsteady forces due to the non-uniform inlet flow. Plotting the unsteady forces of first stage rotor blades for partial admission turbine with single blockage showed that the blades experience large changes in magnitude and direction while traveling along the circumference. Unsteady forces of first stage rotor blades were plotted in frequency domain using Fourier transform. The largest amplitudes caused by partial admission were at first and second multiples of rotational frequency due to the existence of single blockage and change in the force direction. Results obtained from the numerical computations showed that the discs have nonuniform pressure distribution especially in the first stage of partial admission turbines. The axial force of the first rotor wheel was considerably higher when the axial gap distance was reduced between the first stage stator and rotor rows. The commercial codes used in this work are ANSYS ICEM-CFD 11.0 as mesh generator and FLUENT 6.3 as flow solver. / QC20100622
5

Analysis of a new district heating line : Evaluation of heat losses and hydraulic facilities

Sanchez, Javier January 2008 (has links)
The aim of the project is to analyze the enlargement of the district heating line located in Gävle, evaluating the hydraulic facilities and calculating the heat losses with different insulation thicknesses to choose the best insulation thickness for the pipes. To choose the best thickness, different insulation thicknesses have been evaluated calculating the heat losses for each insulation thickness. To manage the heat losses problem, the pipe length has been divided into three stretches, underground pipe, sea pipe and air pipe. These three stretches have different boundary conditions, and each stretch has been calculated separately. The best thermal solution is choosing the insulation of 0.5m of thickness, but the best thermal solution is not the best solution for this project due to the elevated cost of this thickness in one of the stretches of the line. The pipe crossing the seahas to be on the bottom and to keep the pipe on the bottom concrete is going to be added. The quantity of concrete needed depends on the floatability of the pipe and specifically depends on the insulation thickness. The insulation is a porous material and its density is very small, therefore it has a high floatability. The final selection is a multi-thickness insulation, with different insulation thicknesses in the different stretches, 0.6m of thickness in the underground and air pipe and 0.3m of thickness in the sea pipe. With this configuration the heat losses are quite close to the optimum case. The purpose in the hydraulic study has been quantifying the start pressure in the new line to fulfil the energy demand in the worst point of the line. With 320kPa at the start of line, the pressure in the worst point is enough to fulfil the nowadays demand, 3MW, and in the future when this line will be enlarged and the demand increased to 20MW, the pressure at the start of the line to ensure the requested pressure of 250kPa in the worst point should reach more than 380kPa. Having such pressure is not recommended to avoid the pressure hammer and to build a new pumping station after the sea pipe is recommended.
6

Energianalys på Volvo Aero

Månsson, Markus, Wahlgren, Peter January 2008 (has links)
Detta examensarbete har genomförts på Volvo Aero i Trollhättan och består av tre delar: en kartläggning av processventilationens uppbyggnad på ett antal utvalda maskiner och beräkning av dess energiåtgång, en jämförelse ur energieffektivitetssynpunkt mellan ett nyutvecklat maskinkoncept som kallas MultiTask-Cell och traditionell tillverkning, sist har en tomgångsanalys gjorts i verkstaden för att identifiera vad som använder elenergi då ingen produktion sker. För att kunna genomföra uppgifterna har mätningar av elanvändningen gjorts på både maskinnivå och transformatorer, detta för att kunna beräkna energianvändning på utvalda maskiner och även få en helhetssyn över verkstadens energianvändning. Det har även gjorts datainsamling och intervjuer för att få grepp över processventilationens funktion och uppbyggnad. Det finns två varianter på processluften, ett där konstant relativt högt luftflöde används och ett när man genom varvtalsreglering av fläkten använder ett lägre grundflöde som forceras en viss tid vid spindelstopp. Ur energisynpunkt är metoden med grundflöde och forcering att föredra då det leder till både mindre energiförluster genom processluften och en stor minskning av fläktens elbehov. Det har även räknats ut en teoretisk energibesparing vid införande av värmeåtervinning för två maskingrupperingar. Jämförelsen mellan MultiTask-cellen och traditionella maskiner har gjorts genom att mäta den energi det krävs för att tillverka en detalj för respektive tillverkningssätt. MultiTask-cellen visade sig använda cirka 25 % mindre energi än de traditionella maskinerna för tillverkning av samma typ av detalj. Tomgångsanalysen visar på ett högt effektuttag även då det ej sker någon produktion på Volvo Aero. Detta beror till stor del på att maskinerna har en relativt hög tomgångsförbrukning. Denna krävs för att hålla maskinen varm vilket ger en så problemfri uppstart som möjligt. Att byta ut allmänbelysningens armatur till nyare och modernare skulle årligen ge en betydande energibesparing.
7

Energy Survey and Energy Savings in an Office Building with Aid of Building Software

Lu, Yinghao, Musunuri, Ravi Kiran January 2008 (has links)
Simulation is one of the best Analytical tools for Building Research .Energy Efficient Buildings are of great concern which is gaining importance steeply in this energy scarcity’s world. Selected for the thesis work is a small Office building (Mariannelund), located in Jönköping. The building is single-storied with 26 rooms. The study motive involves Energy Survey and to provide, investigate Energy conservation measures. The Energy simulation software used is the IDA indoor climate and energy 3.0. (ICE).Data included was from the provided (Specifications) and with the review of architectural drawings. Energy saving measures was analyzed, documented with respect to their feasibility and practical operational strategies. Measures concerning the modifications in the building envelope; retrofit insulation, shading devices and other improvements leading to savings of energy have been tested and are supplemented with results. The Proposed Model which is with the combined Energy saving measures yields annual energy savings of about 70% and also working efficiency is increased by 37% compared to the existing building’s Baseline model.Considering the economic aspects together with the thermal response of employees the analyzed energy saving measures are highly recommended.
8

Energianalys på Volvo Aero

Månsson, Markus, Wahlgren, Peter January 2008 (has links)
<p>Detta examensarbete har genomförts på Volvo Aero i Trollhättan och består av tre delar: en kartläggning av processventilationens uppbyggnad på ett antal utvalda maskiner och beräkning av dess energiåtgång, en jämförelse ur energieffektivitetssynpunkt mellan ett nyutvecklat maskinkoncept som kallas MultiTask-Cell och traditionell tillverkning, sist har en tomgångsanalys gjorts i verkstaden för att identifiera vad som använder elenergi då ingen produktion sker.</p><p>För att kunna genomföra uppgifterna har mätningar av elanvändningen gjorts på både maskinnivå och transformatorer, detta för att kunna beräkna energianvändning på utvalda maskiner och även få en helhetssyn över verkstadens energianvändning. Det har även gjorts datainsamling och intervjuer för att få grepp över processventilationens funktion och uppbyggnad.</p><p>Det finns två varianter på processluften, ett där konstant relativt högt luftflöde används och ett när man genom varvtalsreglering av fläkten använder ett lägre grundflöde som forceras en viss tid vid spindelstopp. Ur energisynpunkt är metoden med grundflöde och forcering att föredra då det leder till både mindre energiförluster genom processluften och en stor minskning av fläktens elbehov. Det har även räknats ut en teoretisk energibesparing vid införande av värmeåtervinning för två maskingrupperingar.</p><p>Jämförelsen mellan MultiTask-cellen och traditionella maskiner har gjorts genom att mäta den energi det krävs för att tillverka en detalj för respektive tillverkningssätt. MultiTask-cellen visade sig använda cirka 25 % mindre energi än de traditionella maskinerna för tillverkning av samma typ av detalj.</p><p>Tomgångsanalysen visar på ett högt effektuttag även då det ej sker någon produktion på Volvo Aero. Detta beror till stor del på att maskinerna har en relativt hög tomgångsförbrukning. Denna krävs för att hålla maskinen varm vilket ger en så problemfri uppstart som möjligt. Att byta ut allmänbelysningens armatur till nyare och modernare skulle årligen ge en betydande energibesparing.</p>
9

Biomass Energy Systems and Resources in Tropical Tanzania

Wilson, Lugano January 2010 (has links)
<p>Tanzania has a characteristic developing economy, which is dependent on agricultural productivity.  About 90% of the total primary energy consumption of the country is from biomass.  Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply.  However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal.  Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing.  For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed.  Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 – 6.5 kWh/m<sup>2</sup>), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy.  Ongoing exploration work also reveals that the country has an active system of petroleum and uranium.  On the other hand, after commissioning the 229km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry.</p><p> </p><p>Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive.  This calls for putting in place sustainable energy technologies, like gasification, for their harnessing.  The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar.</p><p> </p><p>This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania.  Particularly, the work aimed at establishing characteristic properties of selected biomass feedstock from Tanzania.  The characteristic properties are necessary input to thermochemical process designers and researchers.  Furthermore, since the properties are origin-specific, this will provide baseline data for technology transfer from north to south.  The characteristic properties that were established were chemical composition, and thermal degradation behaviour.  Furthermore, laboratory scale high temperature gasification of the biomasses was undertaken.</p><p> </p><p>Chemical composition characteristics was established to palm waste, coffee husks, cashew nut shells (CNS), rice husks and bran, bagasse, sisal waste, jatropha seeds, and mango stem.  Results showed that the oxygen content ranged from 27.40 to 42.70% where as that of carbon and hydrogen ranged from 35.60 to 56.90% and 4.50 to 7.50% respectively.  On the other hand, the elemental composition of nitrogen, sulphur and chlorine was marginal.  These properties are comparable to findings from other researchers.  Based on the results of thermal degradation characteristics, it was evident that the cashew nut shells (CNS) was the most reactive amongst the analyzed materials since during the devolatilization stage the first derivative TG (DTG) peak due to hemicellulose degradation reached (-5.52%/minute) compared palm stem whose first peak was -4.81%/minute.  DTG first peak for the remaining materials was indistinct.</p><p> </p><p>Results from the laboratory gasification experiments that were done to the coffee husks showed that gasification at higher temperature (900°C) had an overall higher gasification rate.  For instance, during the inert nitrogen condition, 7% of coffee husk remained for the case of 900°C whereas the residue mass for the gasification at 800 and 700°C was 10 and 17% respectively.  Steam injection to the biomass under high temperature gasification evolved the highest volumetric concentration of carbon monoxide.  The CO peak evolution at 900°C steam only was 23.47 vol. % CO whereas that at 700°C was 21.25 vol. % CO.  Comparatively, the CO peaks for cases without steam at 900°C and 2, 3, and 4% oxygen concentrations were 4.59, 5.93, and 5.63% respectively.  The reaction mechanism of coffee husks gasification was highly correlated to zero reaction order exhibiting apparent activation energy and the frequency factor 161 kJ/mol and 3.89x10<sup>4</sup>/minute respectively.</p> / QC 20100923
10

Study of data of a wind farm

Montoya Moyá, Joan January 2009 (has links)
<p>Nowadays, due to global warming and the depletion of petroleum reserves, renewable energies have gained special prominence. At the moment, wind energy is the most successful renewable energy resource, and the technology to convert this wind energy into electricity has been very developed. As a consequence, the costs per kWh of generation have decreased and it has become a competitive alternative for conventional fossil-fuel power plants to generate electricity.However, a lot of factors and variables are involved in wind power generation. In the first part of this document, some of this factors like the Betz limit, the classification of wind turbines and its components, and the power curve of a wind turbine are explained.In the second part, the performance of a real wind farm is studied. The wind farm is called Es Milà, and it is located in an island called Minorca, in Spain.Firstly, a description of this wind farm and the energy and electricity in Minorca is made.Then, with meteorological and power data of 2007 a thorough study of its performance is completed. In this study, first of all some meteorological aspects like wind direction, wind velocity and its distribution are discussed.After that, the study focuses on electricity production, looking at the power curve, at the expected and the real production, and trying to explain a little of the reactive power.</p>

Page generated in 0.1449 seconds