Spelling suggestions: "subject:"qual basis"" "subject:"cual basis""
1 |
Isogeometric Shell Analysis: Multi-patch Coupling and Overcoming LockingZou, Zhihui 08 April 2020 (has links)
The fundamental advantages of applying Isogeometric Analysis (IGA) to shell analysis have been extensively demonstrated across a wide range of problems and formulations. However, a phenomenon called numerical locking is still a major challenge in IGA shell analysis, which can lead to dramatically deteriorated analysis accuracy. Additionally, for complex thin-walled structures, a simple and robust coupling technique is desired to sew together models composed of multiple patches. This dissertation focuses on addressing these challenges of IGA shell analysis. First, an isogeometric dual mortar method is developed for multi-patch coupling. This method is based on Be ?zier extraction and projection and can be employed during the creation and editing of geometry through properly modified extraction operators. It is applicable to any spline space which has a representation in Be ?zier form. The error in the method can be adaptively controlled, in some cases recovering optimal higher-order rates of convergence, by leveraging the exact refineability of the proposed dual spline basis without introducing any additional degrees-of-freedom into the linear system. This method can be used not only for shell elements but also for heat transfer and solid elements, etc. Next, a mixed formulation for IGA shell analysis is proposed that addresses both shear and membrane locking and improves the quality of computed stresses. The starting point of the formulation is the modified Hellinger-Reissner variational principle with independent displacement, membrane, and shear strains as the unknown fields. To overcome locking, the strain variables are interpolated with lower-order spline bases while the variations of the strain variables are interpolated with the proposed dual spline bases. As a result, the strain variables can be condensed out of the system with only a slight increase in the bandwidth of the resulting linear system and the condensed approach preserves the accuracy of the non-condensed mixed approach but with fewer degrees-of-freedom. Finally, as an alternative, new quadrature rules are developed to release membrane and shear locking. These quadrature rules asymptotically only require one point for Reissner-Mindlin (RM) shell elements and two points for Kirchhoff-Love (KL) shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial order p of the elements. The quadrature points are Greville abscissae and the quadrature weights are calculated by solving a linear moment fitting problem in each parametric direction. These quadrature rules are free of spurious zero-energy modes and any spurious finite-energy modes in membrane stiffness can be easily stabilized by using a higher-order Greville rule.
|
2 |
Architectures for Multiplication in Galois Rings / Arkitekturer för multiplikation i Galois-ringarAbrahamsson, Björn January 2004 (has links)
<p>This thesis investigates architectures for multiplying elements in Galois rings of the size 4^m, where m is an integer. </p><p>The main question is whether known architectures for multiplying in Galois fields can be used for Galois rings also, with small modifications, and the answer to that question is that they can. </p><p>Different representations for elements in Galois rings are also explored, and the performance of multipliers for the different representations is investigated.</p>
|
3 |
Architectures for Multiplication in Galois Rings / Arkitekturer för multiplikation i Galois-ringarAbrahamsson, Björn January 2004 (has links)
This thesis investigates architectures for multiplying elements in Galois rings of the size 4^m, where m is an integer. The main question is whether known architectures for multiplying in Galois fields can be used for Galois rings also, with small modifications, and the answer to that question is that they can. Different representations for elements in Galois rings are also explored, and the performance of multipliers for the different representations is investigated.
|
4 |
Concurrent Error Detection in Finite Field Arithmetic OperationsBayat Sarmadi, Siavash January 2007 (has links)
With significant advances in wired and wireless technologies and also increased shrinking in the size of VLSI circuits, many devices have become very large because they need to contain several large units. This large number of gates and in turn large number of transistors causes the devices to be more prone to faults. These faults specially in sensitive and critical applications may cause serious failures and hence should be avoided.
On the other hand, some critical applications such as cryptosystems may also be prone to deliberately injected faults by malicious attackers. Some of these faults can produce erroneous results that can reveal some important secret information of the cryptosystems. Furthermore, yield factor improvement is always an important issue in VLSI design and fabrication processes. Digital systems such as cryptosystems and digital signal processors usually contain finite field operations. Therefore, error detection and correction of such operations have become an important issue recently.
In most of the work reported so far, error detection and correction are applied using redundancies in space (hardware), time, and/or information (coding theory). In this work, schemes based on these redundancies are presented to detect errors in important finite field arithmetic operations resulting from hardware faults. Finite fields are used in a number of practical cryptosystems and channel encoders/decoders. The schemes presented here can detect errors in arithmetic operations of finite fields represented in different bases, including polynomial, dual and/or normal basis, and implemented in various architectures, including bit-serial, bit-parallel and/or systolic arrays.
|
5 |
Concurrent Error Detection in Finite Field Arithmetic OperationsBayat Sarmadi, Siavash January 2007 (has links)
With significant advances in wired and wireless technologies and also increased shrinking in the size of VLSI circuits, many devices have become very large because they need to contain several large units. This large number of gates and in turn large number of transistors causes the devices to be more prone to faults. These faults specially in sensitive and critical applications may cause serious failures and hence should be avoided.
On the other hand, some critical applications such as cryptosystems may also be prone to deliberately injected faults by malicious attackers. Some of these faults can produce erroneous results that can reveal some important secret information of the cryptosystems. Furthermore, yield factor improvement is always an important issue in VLSI design and fabrication processes. Digital systems such as cryptosystems and digital signal processors usually contain finite field operations. Therefore, error detection and correction of such operations have become an important issue recently.
In most of the work reported so far, error detection and correction are applied using redundancies in space (hardware), time, and/or information (coding theory). In this work, schemes based on these redundancies are presented to detect errors in important finite field arithmetic operations resulting from hardware faults. Finite fields are used in a number of practical cryptosystems and channel encoders/decoders. The schemes presented here can detect errors in arithmetic operations of finite fields represented in different bases, including polynomial, dual and/or normal basis, and implemented in various architectures, including bit-serial, bit-parallel and/or systolic arrays.
|
6 |
Isogeometric Bezier Dual Mortaring and ApplicationsMiao, Di 01 August 2019 (has links)
Isogeometric analysis is aimed to mitigate the gap between Computer-Aided Design (CAD) and analysis by using a unified geometric representation. Thanks to the exact geometry representation and high smoothness of adopted basis functions, isogeometric analysis demonstrated excellent mathematical properties and successfully addressed a variety of problems. In particular, it allows to solve higher order Partial Differential Equations (PDEs) directly omitting the usage of mixed approaches. Unfortunately, complex CAD geometries are often constituted by multiple Non-Uniform Rational B-Splines (NURBS) patches and cannot be directly applied for finite element analysis.parIn this work, we presents a dual mortaring framework to couple adjacent patches for higher order PDEs. The development of this formulation is initiated over the simplest 4th order problem-biharmonic problem. In order to speed up the construction and preserve the sparsity of the coupled problem, we derive a dual mortar compatible C1 constraint and utilize the Bezier dual basis to discretize the Lagrange multipler spaces. We prove that this approach leads to a well-posed discrete problem and specify requirements to achieve optimal convergence. After identifying the cause of sub-optimality of Bezier dual basis, we develop an enrichment procedure to endow Bezier dual basis with adequate polynomial reproduction ability. The enrichment process is quadrature-free and independent of the mesh size. Hence, there is no need to take care of the conditioning. In addition, the built-in vertex modification yields compatible basis functions for multi-patch coupling.To extend the dual mortar approach to couple Kirchhoff-Love shell, we develop a dual mortar compatible constraint for Kirchhoff-Love shell based on the Rodrigues' rotation formula. This constraint provides a unified formulation for both smooth couplings and kinks. The enriched Bezier dual basis preserves the sparsity of the coupled Kirchhoff-Love shell formulation and yields accurate results for several benchmark problems.Like the dual mortaring formulation, locking problem can also be derived from the mixed formulation. Hence, we explore the potential of Bezier dual basis in alleviating transverse shear locking in Timoshenko beams and volumetric locking in nearly compressible linear elasticity. Interpreting the well-known B projection in two different ways we develop two formulations for locking problems in beams and nearly incompressible elastic solids. One formulation leads to a sparse symmetric symmetric system and the other leads to a sparse non-symmetric system.
|
Page generated in 0.0552 seconds