• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Triple-layer Tissue Prediction for Cutaneous Skin Burn Injury: Analytical Solution and Parametric Analysis

Oguntala, George A., Indramohan, V., Jeffery, S., Abd-Alhameed, Raed 08 May 2021 (has links)
Yes / This paper demonstrates a non-Fourier prediction methodology of triple-layer human skin tissue for determining skin burn injury with non-ideal properties of tissue, metabolism and blood perfusion. The dual-phase lag (DPL) bioheat model is employed and solved using joint integral transform (JIT) through Laplace and Fourier transforms methods. Parametric studies on the effects of skin tissue properties, initial temperature, blood perfusion rate and heat transfer parameters for the thermal response and exposure time of the layers of the skin tissue are carried out. The study demonstrates that the initial tissue temperature, the thermal conductivity of the epidermis and dermis, relaxation time, thermalisation time and convective heat transfer coefficient are critical parameters to examine skin burn injury threshold. The study also shows that thermal conductivity and the blood perfusion rate exhibits negligible effects on the burn injury threshold. The objective of the present study is to support the accurate quantification and assessment of skin burn injury for reliable experimentation, design and optimisation of thermal therapy delivery.
2

On some models in linear thermo-elasticity with rational material laws

Mukhopadhyay, S., Picard, R., Trostorff, S., Waurick, M. 27 September 2019 (has links)
In the present work, we shall consider some common models in linear thermo-elasticity within a common structural framework. Due to the flexibility of the structural perspective we will obtain well-posedness results for a large class of generalized models allowing for more general material properties such as anisotropies, inhomogeneities, etc.

Page generated in 0.0623 seconds