• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 30
  • 10
  • 10
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 239
  • 72
  • 64
  • 52
  • 46
  • 38
  • 38
  • 30
  • 26
  • 26
  • 25
  • 25
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A New Approach for Evaluating the Ductility, Volumetric Stiffness, and Permeability of Cutoff Wall Backfill Materials

Ostrowsky, Jennifer 01 December 2019 (has links)
The use of plastic concrete for cutoff walls in dams for remediation of seepage issues has become more widely used in the past 25 years, however, the in-situ material properties are still not well understood. The research presents a new testing procedure that combines two existing testing methods, triaxial shear and permeability testing. By developing this laboratory testing method, material properties of the cutoff wall backfill material can be more accurately examined and explained using changes in the permeability of the material to discern the ductility and stiffness.
32

Carbon nanotube and nanofiber reinforcement for improving the flexural strength and fracture toughness of portland cement paste

Tyson, Bryan Michael 2010 May 1900 (has links)
The focus of the proposed research will be on exploring the use of nanotechnology-based nano-filaments, such as carbon nanotubes (CNTs) and nanofibers (CNFs), as reinforcement in improving the mechanical properties of portland cement paste as a construction material. Due to their ultra-high strength and very high aspect ratios, CNTs and CNFs have been used as excellent reinforcements in enhancing the physical and mechanical properties of polymer, metallic, and ceramic composites. Very little attention has been devoted on exploring the use of nano-filaments in the transportation industry. Therefore, this study aims to bridge the gap between nano-filaments and transportation materials. This will be achieved by testing the integration of CNTs and CNFs in ordinary portland cement paste through state-of-the-art techniques. Different mixes in fixed proportions (e.g. water-to-cement ratio, air content, admixtures) along with varying concentrations of CNTs or CNFs will be prepared. Different techniques commonly used for other materials (like polymers) will be used in achieving uniform dispersion of nano-filaments in the cement paste matrix and strong nano-filaments/cement bonding. Small-scale specimens will be prepared for mechanical testing in order to measure the modified mechanical properties as a function of nano-filaments concentration, type, and distribution. With 0.1 percent CNFs, the ultimate strain capacity increased by 142 percent, the flexural strength increased by 79 percent, and the fracture toughness increased by 242 percent. Furthermore, a scanning electron microscope (SEM) is used to discern the difference between crack bridging and fiber pullout. Test results show that the strength, ductility, and fracture toughness can be improved with the addition of low concentrations of either CNTs or CNFs.
33

せん断力を受ける無補剛箱形断面部材の強度と変形能

葛西, 昭, KASAI, Akira, 渡辺, 智彦, WATANABE, Tomohiko, 宇佐美, 勉, USAMI, Tsutomu, CHUSILP, Praween 04 1900 (has links)
No description available.
34

Influence of hot rolling microstructure on mechanical properties of fullyannealed 5052 aluminum alloy

Hung, Liang-Jie 24 July 2012 (has links)
The objective of this work is to investigate the influence of hot rolling process on the mechanical properties of AA 5052 aluminum alloy. Hot-rolled band fabricated by tandem mill (hot-band A) will be compared with that fabricated by reverse mill hot-band C). Optical microscopic observations revealed that hot-band A has a uniform microstructure throughout the thickness, while hot-band C exhibits non-uniform microstructure, fine grains near the surface and coarser grains in the center. Both hot-bands were subjected to cold-rolling and annealing to O-temper. Two annealing processes were used: (a) annealing in 500oC salt bath, which may simulate the high heating rate of continuous annealing line (CAL), and (b) annealing in 320oC conventional air furnace with heating rate of 30oC/h, which may simulate the slow heating rate of batch-type annealing. In general, both materials annealed in 320oC air furnace exhibit higher yield strength than those annealed in 500oC salt bath do, however, both materials exhibit better tensile ductility after annealed in 500oC salt bath as compared with those annealed in 320oC air furnace.TEM examinations indicated that the cold-rolled sheet after annealing in 320oC air furnace contains larger number of precipitates comparing with its 500oC salt bath annealed counterpart. This observation may account for the higher yield strength of cold-rolled sheet annealed in 320oC air furnace. After cold-rolling and annealing in 320oC air furnace, the material C shows higher yield strength than the material A does. However, after annealing in 500oC salt bath, both materials have similar yield strength. XRD pole-figure analysis indicated that hot-band A exhibited stronger texture than hot-band C did. The texture intensity for both materials decreased considerably after cold-rolling and annealing. Orientation image mapping (OIM) obtained by EBSD (electron backscattered diffraction) analysis indicated that the grain boundaries in both materials after cold-rolling and annealing were mainly high angle boundaries, and the 500oC salt bath annealed specimens have more equiaxed grain shape as compared with the 320oC air furnace annealed specimens.
35

Serrated flow and enhanced ductility in coarse-grained Al-Mg alloys

Samuel, Ehab. January 2008 (has links)
Aluminum 5XXX alloys are of industrial importance and interest as they combine a wide range of desirable strength, forming and welding characteristics with a high resistance to corrosion. The presence of Mg in these alloys ensures favorable mechanical properties. However, the room temperature stretching performance of these alloys is limited. Moreover, Al-Mg alloys are known for being susceptible to the Portevin-LeChatelier effect when deformed at room temperature. Nevertheless, improvements in ductility can be achieved through warm forming, especially when the ductility approaches superplastic levels. / The aim of this study was to test for enhanced ductility in three coarse-grained Al-Mg alloys namely, super-pure Al-3%Mg and Al-5%Mg, and commercial AA 5056 alloy. The temperature-dependent flow stress and rate sensitivity behavior of these alloys was investigated by means of tensile testing using ASTM E8M-04 standard samples. Samples were deformed to 10% strain to allow enough deformation to occur such that serrations in the dynamic strain aging (DSA) temperature/strain rate range would be rendered visible on a stress-strain curve. Using this information, the regions of negative and higher-than-normal strain rate sensitivity ('m') were plotted and tensile tests to failure were performed in the vicinity of maximum 'm'. ASTM E2448-06 standard samples for superplasticity tensile testing were used in this case. / A maximum ductility of 170% was recorded with these samples and this was found to increase to nearly 300% when the gage length was shortened. It was observed that the DSA serrations were more prominent at lower strain rates, higher temperatures and higher Mg contents. The results of this study show clearly that if the rate sensitivity is high enough, then enhanced ductility in coarse-grained materials is possible at temperatures well below the maximum test temperature.
36

Mechanical Properties of Fillet Weld Joints by Underwater Wet Welding in Repairing Corrosion-Damaged Offshore Steel Structures

Itoh, Yoshito, Kitane, Yasuo, Chen, Xiao 01 August 2010 (has links)
No description available.
37

Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns

Tanaka, Hitoshi January 1990 (has links)
This thesis is concerned with the effects of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns. The contents of the chapters are summarized as follows. In Chapter one, the general problems in seismic design are discussed and earthquake design methods based on the ductile design approach are described. Japanese, New Zealand and United States design codes are compared. Finally, the scope of this research project is outlined. In Chapter two, after reviewing previous research on confined concrete, the factors which affect the effectiveness of lateral confinement are discussed. Especially the effects of the yield strength of transverse reinforcement, the compressive strength of plain concrete and the strain gradient in the column section due to bending are discussed based on tests which were conducted by the author et al at Kyoto University and Akashi Technological College, Japan. In the axial compression tests on spirally reinforced concrete cylinders (150 mm in diameter by 300 mm in height), the yield strength of transverse reinforcement and the compressive strength of plain concrete were varied from 161 MPa to 1352 MPa and from 17 MPa to 60 MPa, respectively, as experimental parameters. It is found that, when high strength spirals are used as confining reinforcement, the strength and ductility of the confined core concrete are remarkably enhanced but need to be estimated assuming several failure modes which could occur. These are based on the observations that concrete cylinders with high strength spirals suddenly failed at a concrete compressive strain of 2 to 3.5 % due to explosive crushing of the core concrete between the spiral bars or due to bearing failure of the core concrete immediately beneath the spiral bars, while the concrete cylinders with ordinary strength spirals failed in a gentle manner normally observed. In addition, eccentric loading tests were conducted on concrete columns with 200 mm square section confined by square spirals. It is found that the effectiveness of confining reinforcement is reduced by the presence of the strain gradient along the transverse section of column. In Chapter three, the effectiveness of transverse reinforcement with various types of anchorage details which simplify the fabrication of reinforcing cages are investigated. Eight reinforced concrete columns, with either 400 mm or 550 mm square cross sections, were tested subjected to axial compression loading and cyclic lateral loading which simulated a severe earthquake. The transverse reinforcement consisted of arrangements of square perimeter hoops with 135° end hooks, cross ties with 90° and 135° or 180° end hooks, and 'U' and 'J' shaped cross ties and perimeter hoops with tension splices. Conclusions are reached with regard to the effectiveness of the tested anchorage details in the plastic hinge regions of columns designed for earthquake resistance. In Chapter four, the effectiveness of interlocking spirals as transverse reinforcement is studied. Firstly, the general aspects and the related problems of interlocking spirals to provide adequate ductility in the potential plastic hinge region of columns are discussed, referring to the provisions in the New Zealand code,the CALTRANS (California Transportation Authority) code and other related codes. Secondly, based on those discussions, a design method to securely interlock the spirals is proposed. Thirdly, the effectiveness of interlocking spirals is assessed based on column tests conducted as part of this study. Three columns with interlocking spirals and, for comparison, one rectangular column with rectangular hoopsandcross ties, were tested under cyclic horizontal loading which simulated a severe earthquake. The sections of those columns were 400 mm by 600 mm. In Chapter five, analytical models to investigate the buckling behaviour of longitudinal reinforcement restrained by cross ties with 90° and 135° end hooks and by peripheral hoops are proposed. The analyzed results using the proposed models compare well with the experimental observations described in Chapter three. Using those proposed models, a method to check the effectiveness of cross ties with 90° and 135° end hooks is proposed for practical design purposes. In Chapter six, a theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture referred to as the "Energy Balance Theory", which has been developed by Mander, Priestley and Park at University of Canterbury, is introduced. After discussing the problems in the "Energy Balance Theory", a modified theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture is proposed. The predictions from the modified theory are found to compare well with previous experimental results.
38

Radiation-induced evolution of microstructure and mechanical properties of stainless steels

Hankin, G. L. January 1998 (has links)
Radiation-induced changes in microstructures often lead to significant changes in mechanical properties of alloys used in the construction of nuclear reactors. It is desirable to test small specimens to make efficient use of the small volumes available in test and commercial reactor cores and also because small specimens are less affected by the sometimes steep flux gradients experienced in reactor cores and the sometimes large temperature gradients developed in the specimens from gamma heating. (Continues...).
39

Behaviour of demountable shear connectors in composite structures

Rehman, Naveed Ur January 2017 (has links)
The research presented in this thesis is to evaluate the feasibility of demountable shear connectors as an alternative to welded shear connectors in composite structures through push off tests and composite beam tests. Push off tests were conducted to examine the shear strength, stiffness and ductility of demountable shear connectors in composite structures. The experimental results showed that demountable shear connectors in composite structures have very similar shear capacity to welded shear connectors. The shear capacity was compared against the prediction methods used for the welded shear connections given in Eurocode 4 and AISC 360-10 and the methods used for bolted connections in Eurocode 3 and ACI 318-08. It was found that the AISC 360-10 and ACI 318-08 methods overestimated the shear capacity in some cases. The Eurocode method is conservative and can be utilised to predict the shear capacity of demountable connectors in composite structures. The experimental studies of two identical composite beams using demountable shear connectors and welded shear connectors showed very similar moment capacity. However, the specimen with demountable shear connectors was more ductile compared to the welded specimen. The experimental study suggests that the methods available in Eurocode 4 and BS 5950 for predicting moment capacity and mid span deflection can be adopted for composite beam with demountable shear connectors. In addition, a finite element analysis of push off test and beam test with demountable shear connectors was also conducted for parametric studies and results are used to evaluate the behaviour of composite structures.
40

Análise teórica e experimental de vigas de concreto armado com armadura de confinamento / Theoretical and experimental analysis of reinforced concrete beams with confinement reinforcement

Rodrigo Gustavo Delalibera 29 April 2002 (has links)
Este trabalho discute a utilização de armadura de confinamento em vigas superarmadas de concreto armado. Essa armadura é constituída de estribos quadrados colocados na região de compressão da seção transversal da viga, aumentando a ductilidade. Para a análise numérica, utilizou-se programa computacional baseado no Método dos Elementos Finitos e que leva em consideração o efeito do confinamento no concreto, possibilitando estudar criteriosamente a influência da armadura de confinamento em vigas superarmadas. Na etapa experimental foi investigada a influência da taxa volumétrica da armadura transversal de confinamento, sendo realizados ensaios de quatro vigas superarmadas -três detalhadas com estribos adicionais destinados ao confinamento e uma projetada sem armadura de confinamento. Todas as vigas tiveram deformações nas barras da armadura de tração próximas a 'épsilon' y e resistência média à compressão do concreto de 25MPa. Os resultados experimentais mostraram que o índice de ductilidade pós-pico é proporcional à taxa volumétrica da armadura transversal de confinamento. Isso não aconteceu para o índice de ductilidade pré-pico, que teve variação aleatória com a taxa volumétrica de armadura de confinamento. Observou-se também que a resistência à compressão do concreto confinado no núcleo de confinamento diminuiu na proximidade da linha neutra. Considerando os resultados numéricos e experimentais, foi desenvolvido um processo simplificado para o dimensionamento de vigas de concreto armado com armadura de confinamento, onde a resistência à compressão do concreto confinado é função da taxa volumétrica da armadura de confinamento e da resistência do concreto não confinado / This work discusses the use of confinement reinforcement in over designed reinforced concrete beam. This reinforcement is composed by square stirrup placed on the compression zone of the beam transversal section, which improves the ductility avoiding fragile collapse. A Finite Element program was used to make a parametric numerical study. This program considers the non-linearity of the material and the confinement effect, making possible an accuracy study of those beams. In the experimental part, the influence of volumetric confinement transversal reinforcement rate was investigated by the test of four over designed beam, where three had addiction stirrup for the confinement reinforcement and one was designed without this reinforcement. All the beams were composed by 25MPa concrete. The experimental results show that the pos-peak ductility index is proportional to the volumetric confinement transversal reinforcement rate, however it was not observed for the pre-peak ductility index. It was also observed that effect of the confinement is smaller closed to the neutral axis. A simplified design process for reinforced concrete beam with reinforcement confinement was developed based on the numerical study that was performed. In this method the concrete strength is function of the transversal reinforcement volumetric rate and the non-confined concrete strength

Page generated in 0.0396 seconds