• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Assessment of Dynamic Charging for Electric Vehicles in Metropolitan Cities

Nguyen, Duc Minh 04 1900 (has links)
Electric vehicles (EVs) have emerged to be the future of transportation as the world observes its rising demand and usage across continents. However, currently, one of the biggest bottlenecks of EVs is the battery. Small batteries limit the EVs driving range, while big batteries are expensive and not environmentally friendly. One potential solution to this challenge is the deployment of charging roads, i.e., dynamic wireless charging systems installed under the roads that enable EVs to be charged while driving. In this thesis, we establish a framework using stochastic geometry to study the performance of deploying charging roads in metropolitan cities. We first present the course of actions that a driver may take when driving from a random source to a random destination, and then analyze the distribution of the distance to the nearest charging road and the probability that the trip passes through at least one charging road. These probability distributions assist not only urban planners and policy makers in designing deployment plans of dynamic wireless charging systems, but also drivers and automobile manufacturers in choosing the best driving routes given the road conditions and level of energy of EVs.
2

Design of Road Embedded Dynamic Charging Systems for Electrified Transportation

Tavakoli, Reza 01 May 2020 (has links)
The U.S. transportation sector represented about 28% of all energy consumption in 2018. Petroleum products accounted for 92% of this total energy. Light-duty vehicles are the largest energy consumers in the transportation sector. The high amount of petroleum used by light-duty vehicles creates significant economic and environmental challenges. Electric Vehicles (EVs) have a higher fuel economy and can be emission-free; they are therefore an alternative solution for minimizing the negative environmental impact of internal combustion engine vehicles. However, the adoption of EVs has been limited by their limited driving range, long recharging time, and comparatively higher price. Dynamic wireless charging technology allows for charging the EV battery in motion. Charging pads are embedded in the road and the EV battery is charged while the vehicle is passing over them. This technology not only extends the EV range but also results in a considerable reduction in battery size and capacity. Therefore, dynamic wireless charging solves one of the major issues of EVs, leading to their large-scale adoption. In the first part of this dissertation, a pad optimization methodology is presented to minimize system cost and losses. Using this method, two pads are optimized, built and tested for charging the EV. In the next section, two methods are presented to estimate how much the EV is laterally misaligned with respect to the center of the charging pads. This helps to increase system efficiency and power transfer capability. Finally, new concrete-based material is presented and studied to reduce the charging pad cost and increase their durability.
3

Power infrastructure requirements for road transport electrification

Nicolaides, Doros January 2018 (has links)
Deep decarbonisation of road transportation is challenging. One of the most potentially beneficial approaches is electrification which is the subject of this PhD thesis. A widespread penetration of electric vehicles (EVs) across a large proportion of road transport demand is needed to realise the benefits of an electrified transport sector. However, this is dependent on overcoming significant barriers. This study performs a systematic analysis of how proven power charging technologies could be used to unlock the barriers to widespread electrification of road transportation. Various road transport sectors and type of journeys are explored including aspects of autonomous operations and novel wireless power transfer technologies. For each operation, a framework is proposed that allows the exploitation of current and potential future electrification technologies to enable shifting towards EVs. Based on that, simulation tools and methods are developed to calculate the power requirements of EVs and determine a suitable charging infrastructure. The additional power demand, electric load and the implications for the electricity supply network are explored. The total expenditure needed and the CO2 emission savings are also calculated for each investigated operation. Transitional strategies include the electrification of bus routes, refuse collection functions, home deliveries and aspects of autonomous operations for public transportation within the boundaries of the cities. In the long-term, focus is given on passenger cars and freight vehicles for both urban and inter-urban journeys. A nationwide adoption of all electrification strategies proposed in this thesis would increase the peak power demand of Great Britain by approximately 38 GW (72% of the current peak) and the electricity consumption by 180 TWh per year (45% of current consumption). The total capital cost required is calculated at £225 billion which is similar to the cost of other large infrastructure projects of the country. The impact would be a significant aggregate saving of approximately 2,000 MtCO2 between the numbers calculated for today's norms (2018) and those calculated for 2050.
4

Nätanslutning av en framtida elväg : En kartläggning av anslutningsmöjligheter för E4an mellan Gävle och Stockholm / Grid connection of a future electric road

Ekström, Amelie, Wänlund, Jessica January 2021 (has links)
The transport sector accounts for a third of Sweden’s total greenhouse gas emissions where cars and heavy trucks dominate the use of fossil fuels. The Swedish government is now intensifying the work for an electrified transport sector where electric roads could be an important part. Electric roads enable heavy vehicles to charge their batteries while driving, which is expected to contribute to environmentally friendly and time-efficient freight transports. To implement electric roads, availability of electric power along the electric roads will be required. This study presents a plan for connecting an electric road to the electricity grid in the electricity network area of Vattenfall Eldistribution. From the results, the idea was to present general conclusions from the experiences of the study, that could contribute in further implementation of electric roads.  The road that has been selected for the study was the E4 between Gävle and Stockholm. A model for calculating the power demand along the electric road has been modeled and connection possibilities to transformer stations has been investigated. The analysis was based on three scenarios where different degrees of strengthening of the existing electricity network were assumed. In addition, a forecast for 2030 and a cost estimation for each scenario has been carried out. The result of the study indicates that for road sections close to larger cities, there are a larger number of connection options in comparison to rural areas. Furthermore, the designed solution in the study required strengthening of the electricity grid and the investment cost was 362 million Swedish crowns.
5

Nätanslutning av en framtida elväg : En kartläggning av anslutningsmöjligheter för E4an mellan Gävle och Stockholm / Grid connection of a future electric road

Wänlund, Jessica, Ekström, Amelie January 2021 (has links)
The transport sector accounts for a third of Sweden’s total greenhouse gas emissions where cars and heavy trucks dominate the use of fossil fuels. The Swedish government is now intensifying the work for an electrified transport sector where electric roads could be an important part. Electric roads enable heavy vehicles to charge their batteries while driving, which is expected to contribute to environmentally friendly and time-efficient freight transports. To implement electric roads, availability of electric power along the electric roads will be required. This study presents a plan for connecting an electric road to the electricity grid in the electricity network area of Vattenfall Eldistribution. From the results, the idea was to present general conclusions from the experiences of the study, that could contribute in further implementation of electric roads. The road that has been selected for the study was the E4 between Gävle and Stockholm. A model for calculating the power demand along the electric road has been modeled and connection possibilities to transformer stations has been investigated. The analysis was based on three scenarios where different degrees of strengthening of the existing electricity network were assumed. In addition, a forecast for 2030 and a cost estimation for each scenario has been carried out. The result of the study indicates that for road sections close to larger cities, there are a larger number of connection options in comparison to rural areas. Furthermore, the designed solution in the study required strengthening of the electricity grid and the investment cost was 362 million Swedish crowns.

Page generated in 0.066 seconds