• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic updates of mobile apps using JavaScript

Spetz-Nyström, Simon January 2015 (has links)
Updates are a natural part of the life cycle of an application. The traditional way of updating an application by stopping it, replacing it with the new version and restarting it is lacking in many ways. There have been previous research in the field of dynamic software updates (DSU) that attempt to salvage this problem by updating the app while running. Most of the previous research have focused on static languages like C and Java, research with dynamic languages have been lacking. This thesis takes advantage of the dynamic features of JavaScript in order to allow for dynamic updates of applications for mobile devices. The solution is implemented and used to answer questions about how correctness can be ensured and what state transfer needs to be manually written by a programmer. The conclusion is that most failures that occur as the result of an update and is in need of a manually written state transfer can be put into one of three categories. To verify correctness of an update tests for these types of failures should be performed.
2

Applying Dynamic Software Updates to Computationally-Intensive Applications

Kim, Dong Kwan 22 July 2009 (has links)
Dynamic software updates change the code of a computer program while it runs, thus saving the programmer's time and using computing resources more productively. This dissertation establishes the value of and recommends practices for applying dynamic software updates to computationally-intensive applications—a computing domain characterized by long-running computations, expensive computing resources, and a tedious deployment process. This dissertation argues that updating computationally-intensive applications dynamically can reduce their time-to-discovery metrics—the total time it takes from posing a problem to arriving at a solution—and, as such, should become an intrinsic part of their software lifecycle. To support this claim, this dissertation presents the following technical contributions: (1) a distributed consistency algorithm for synchronizing dynamic software updates in a parallel HPC application, (2) an implementation of the Proxy design pattern that is more efficient than the existing implementations, and (3) a dynamic update approach for Java Virtual Machine (JVM)-based applications using the Proxy pattern to offer flexibility and efficiency advantages, making it suitable for computationally-intensive applications. The contributions of this dissertation are validated through performance benchmarks and case studies involving computationally-intensive applications from the bioinformatics and molecular dynamics simulation domains. / Ph. D.

Page generated in 0.067 seconds