• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptability Of Generative Algorithms: A Means To Sustaining The Dynamic Design Processes

Damdere, Ekin 01 September 2010 (has links) (PDF)
This thesis is an investigation focusing on the adaptability of generative systems in a dynamic design problem, where the problem definition changes according to the changing conditions of the environment and transforming needs of the architectural space. This thesis, instead of discussing the dynamicity of the design processes, investigates the use of an adaptable generative system in a case-specific dynamic design problem to sustain its changing problem definitions. The research mainly looks into the potentials of generative systems in terms of adaptability and develops a generative system that is able to transform its structure in accordance with the dynamic constraints of a complex design process.
2

Implementering av träkomponenters inverkan på höga byggnaders dynamiska respons och koldioxidutsläpp

Timmerbäck, Nilesh January 2022 (has links)
Träbyggandet har ökat drastiskt sedan år 1994 då den Europeiska unionen (EU) införskaffade ett byggproduktdirektiv, idag numera ersatt med byggproduktförordningen CPR, Construction Products Regulation. Från att träbyggandet tidigare främst inkluderat bostadsbyggande kan nu även föreskrivna funktioner godkännas för högre byggnader. Trämaterialets förmåga att binda koldioxid och utveckling av korslimmat trä, förkortat KL-trä, är två bidragande faktorer till att trä idag är ett uppmärksammat byggmaterial. Mer användning av trä i höga byggnader kan dock, på grund av dess låga vikt och styvhet, medföra känsligheter mot dynamisk vindpåverkan vilket kan vara en avgörande faktor vid dimensionering. Förhöjda accelerationsnivåer är en konsekvens av de dynamiska lasterna vilket som påföljd kan ha en negativ effekt på brukarna av byggnaden. I följande examensarbete studeras denna problematik för en standardiserad byggnad. Syftet med examensarbete är att undersöka hur implementering och användning av trä i en hög byggnad påverkar byggnadens dynamiska respons och koldioxidutsläpp. Studien fokuserar på att undersöka hur accelerationsnivåerna ser ut vid användning av konstruktionssystem som är helt eller delvis av trä samt vilket förändrat klimatavtryck detta medför jämfört med en standardiserad betongbyggnad. I första delen av fallstudien studeras accelerationsnivåerna för olika alternativa konstruktionssystem där majoriteten av stabiliseringen nyttjas genom stabiliserande skivor internt och externt i byggnaden. I fallstudiens andra del används resultaten från första delen för att iterativt skapa en modell med lägst möjliga koldioxidavtryck och som samtidigt uppfyller acceptabla accelerationsnivåer enligt ISO 10137. De studerade strukturerna modelleras upp i Finita Element programvaran FEM-Design 20 utifrån en framtagen grundmodell baserad på tidigare litteraturstudie. I programvaran utförs en modalanalys för att erhålla egenfrekvenser och svängningsmoder för de studerade strukturerna. Med dessa ingångsvärden beräknas accelerationsnivåerna för samtliga strukturer enligt riktlinjer i EKS11 och SS-EN 1991-1-4 samt jämförs med acceptabla accelerationsnivåer i ISO 10137. Med erhållna resultat används en iterativ process för att ta fram en struktur med minsta möjliga koldioxidavtryck. Klimatavtrycket jämförs med den standardiserade betongbyggnaden genom att beräkna och jämföra mängden koldioxidekvivalenter.  Resultatet visar att det är mest fördelaktigt att nyttja intern stabilisering för att erhålla högre egenfrekvenser och lägre accelerationsnivåer. Strukturer som nyttjar extern stabilisering visar förhöjda accelerationsnivåer med   jämfört med intern stabilisering. Dock visar användning av intern stabilisering att det är större sannolikhet att erhålla roterande svängningar som första svängningsmod, detta innebär att de stabiliserande väggarna bör adderas till strukturen med försiktighet. Användning av kombinerad intern- och extern stabilisering visar ingen påtaglig fördel, dock visar resultatet att sammanhängande skivor som bildar en stabiliserande kärna bidrar till en markant ökning i byggnadens styvhet. Den modell som tagits fram med minst klimatavtryck har ett pelar-balksystem i limträ med KL-träskivor i bjälklag och som stabilisering i byggnadens centrala delar. Beräkning av byggnadernas koldioxidavtryck visar en reduktion på  , störst reduktion fås för bjälklagen. / Since year 1994, timber construction has increased dramatically due to that the European Union (EU) acquired a construction product directive, later replaced by the Construction Products Regulation (CPR). Timber construction has previously mainly included housing construction but is nowadays also used for high-rise buildings, this due to that the prescribed properties now can be approved for taller buildings. Two contributing factors to making timber a popular building material is its ability to bind carbon dioxide and the development of cross-laminated timber. On the other hand, using more timber in high-rise buildings can lead to sensitivities to dynamic wind loading due to its low weight and stiffness. This can be a decisive factor during design. Increased acceleration levels are a consequence of the dynamic loading which can have a negative effect on the users of the building. In following thesis this problem is studied for a standardized building. The purpose of the thesis is to investigate how implementation and the use of timber in high-rise buildings affects the building’s dynamic response and carbon dioxide emissions. The main focus is to study how the acceleration levels vary when using construction systems entirely or partly of timber and what carbon footprint this entails, compared to a standardized concrete building. In the first part of the case study, the acceleration levels for different construction systems are studied, where the majority of the stabilization is used internally and externally in the building. In the second part of the case study, the results from the first part are used to iteratively produce a model that have the lowest possible carbon footprint, as well as acceptable requirements regarding acceleration levels is achieved according to ISO 10137. The studied structures are modeled in the Finite Element software FEM-Design 20 based on a base model from a literature study. A modal analysis is performed in the software to obtain natural frequencies and mode shapes for the studied structures. With these input values, the acceleration levels can be calculated according to the guidelines in EKS 11 and SS-EN 1991-1-4, and then compared with acceptable acceleration levels in ISO 10137. With the results obtained, an iterative process is used to make a model with lowest possible carbon footprint. Lastly, the carbon footprint is compared with the standardized concrete building by calculating and comparing the amount of carbon dioxide equivalents.  The results show that it is most beneficial to use internal stabilization in order to obtain higher natural frequencies and lower acceleration levels. Structures using external stabilization show increased acceleration levels by   compared to internal stabilization. However, the use of internal stabilization shows that rotational mode shapes are more likely to be obtained as the first mode shape, this means that the stabilizing walls should be added to the structure with caution. The use of a combination of both internal and external stabilization shows no significant improvements. However, the results show that continuous walls forming a central core contributes to a significant increased stiffness for the structure, compared to separately placed walls. The final model with the lowest possible carbon footprint has a column-beam system in glulam with cross-laminated timber in the floors, and as stabilization in the central parts of the building (core). Calculation of the building’s carbon footprint shows a reduction of  , the largest reduction is achieved in the floors.
3

Exploring the Impact of Dynamic Design Elements on User Experience in Digital Interfaces : Understanding the Role of Dynamic Elements

Al-Hufah Al-Otaibi, Abdulmalek, Kiaee, Kiarash January 2024 (has links)
This study seeks to investigate the subtle impact that dynamic design elements in web interfaces have on users, particularly on users' decision-making and engagement. In contrast to most current research efforts, which predominantly address mobile applications, the current study aims to direct the focus on web-based environments to reveal special behavioral responses evoked by dynamic design features. The study adopts a comprehensive mixed-methods approach that encompasses qualitative and quantitative data collection techniques. This includes A/B testing on the prototypes of web interfaces, which provides the base for measuring engagement objectively from users. A very salient point here is that animations increase user retention by 30%, which shows that well-applied dynamic elements can advance the stickiness and interaction users would have with a digital platform. On the other hand, the thesis also mentions the risks related to such design elements, like the ability to cause cognitive overload and distraction in case of non-judicious use of these elements. Through the account of user behavioral analysis in response to various implementations, the research provides useful insights to web designers and developers about how to use animations and transitions judiciously for navigational intuitiveness and responsiveness without hampering web interface usability. The present research also adds to theories for UX and user interface design (UID) by promoting the balanced integration of dynamic design elements. What was brought to the forefront was that research to understand the specific impacts of these elements can lead to more effective digital environments, tailored to foster user engagement that could support efficient processes of decision making. This thesis not only fills the academic gap related to digital interaction but also provides a practical guideline for the improvement of web interface design given user behavior and technology.

Page generated in 0.0524 seconds