Spelling suggestions: "subject:"cynamic realtime optimization"" "subject:"cynamic realtime optimization""
1 |
Design and Analysis of Dynamic Real-time Optimization SystemsEskandari, Mahdi 30 November 2017 (has links)
Process economic improvement subject to safety, operational and environmental constraints is an ultimate goal of using on-line process optimization and control techniques. The dynamic nature of present-day market conditions motivates the consideration of process dynamics within the economic optimization calculation. Two key paradigms for implementing real-time dynamic economic optimization are a dynamic real-time optimization (DRTO) and regulatory MPC two-layer architecture, and a single-level economic model predictive control (EMPC) con figuration. In the two-layer architecture, the economically optimal set-point trajectories computed in an upper DRTO layer are provided to the MPC layer, while in the
single-layer EMPC con figuration the economics are incorporated within the MPC objective function. There are limited studies on a systematic performance comparison between these two approaches. Furthermore, these studies do not simultaneously consider the economic, disturbance rejection and computational performance criteria. Thus, it may not be clear under what conditions one particular method is preferable over the other. These reasons motivate a more comprehensive comparison between the two paradigms, with both open and closed-loop predictions considered in the DRTO calculations. In order to conduct this comparison, we utilize two process case studies for the economic analysis and performance comparison of on-line optimization systems. The first case study is a process involving two stirred-tank reactors in-series with an intermediate mixing point, and the second case study is a linear multi-input single-output (MISO) system. These processes are represented using a fi rst principles model in the form of differential-algebraic equations (DAEs) system for the first case study and a simplified linear model of a polymerization reactor for the second case study problem. Both of the case study processes include constraints associated with input variables, safety considerations, and output quality. In these case study problems, the objective of optimal process operation is net profit improvement.
The following performance evaluation criteria are considered in this study: (I) optimal value of the economic objective function, (II) average run time (ART) over a same operating time interval, (III) cumulative output constraint violation (COCV) for each constraint. The update time of the single-layer approach is selected to be equal to that of the control layer in the two-layer formulations, while the update time of the economic layer in the two-layer formulation is bigger than that of the single-layer approach. The nonlinear programing (NLP) problems which result in the single-layer and two-layer formulations and the quadratic programing problem which corresponds to the MPC formulation are solved using the fmincon and quadprog optimization solvers in MATLAB. Performance assessment of the single-layer and two-layer formulations is evaluated in the presence of a variety of unknown disturbance scenarios for the first case study problem. The effect of a dynamic transition in the product quality is considered in the performance comparison of the single-layer and two-layer methods in the second case-study problem.
The first case study problem results show that for all unknown disturbance scenarios, the economic performance of the single-layer approach is slightly higher than that of the two layer formulations. However, the average computation times for the DRTO-MPC two-layer formulations are at least one order of magnitude lower than that of the EMPC formulation.
Also, comparison results of the COCV for the EMPC formulation for different sizes of update time intervals could justify the necessity of the MPC control layer to reduce the COCV for the economic optimization problems with update times larger than that of the MPC control layer. A similar computational advantage of the OL- and CL-DRTO-MPC over the EMPC is observed for the second case study problem. In particular, it is shown that increasing the economic horizon length in the EMPC formulation to a sufficiently large value may result a higher economic improvement. However, the increase in economic optimization horizon would increase the resulting NLP problem size. The computational burden could limit the use of the EMPC formulation with larger economic optimization horizons in real-time applications. The ART of the dual-layer methods is at least two orders of magnitude lower than that of the EMPC methods with an appropriate horizon length. The CL-DRTO-MPC economic performance is slightly less than that of the EMPC formulation with the same economic optimization horizon.
In conclusion, the performance comparison on the basis of multiple criteria in this study demonstrates that the economic performance criterion is not necessarily the only important metric, and the operational constraint limitations and the optimization problem solution time could have an important impact on the selection of the most suitable real-time optimization approach. / Thesis / Master of Applied Science (MASc)
|
2 |
Closed-loop Dynamic Real-time Optimization for Cost-optimal Process OperationsJamaludin, Mohammad Zamry January 2016 (has links)
Real-time optimization (RTO) is a supervisory strategy in the hierarchical industrial process automation architecture in which economically optimal set-point targets are computed for the lower level advanced control system, which is typically model predictive control (MPC). Due to highly volatile market conditions, recent developments have considered transforming the conventional steady-state RTO to dynamic RTO (DRTO) to permit economic optimization during transient operation. Published DRTO literature optimizes plant input trajectories without taking into account the presence of the plant control system, constituting an open-loop DRTO (OL-DRTO) approach. The goal of this research is to develop a design framework for a DRTO system that optimizes process economics based on a closed-loop response prediction. We focus, in particular, on DRTO applied to a continuous process operation regulated under constrained MPC. We follow a two-layer DRTO/MPC configuration due to its close tie to the industrial process automation architecture.
We first analyze the effects of optimizing MPC closed-loop response dynamics at the DRTO level. A rigorous DRTO problem structure proposed in this thesis is in the form of a multilevel dynamic optimization problem, as it embeds a sequence of MPC optimization subproblems to be solved in order to generate the closed-loop prediction in the DRTO formulation, denoted here as a closed-loop DRTO (CL-DRTO) strategy. A simultaneous solution approach is applied in which the convex MPC optimization subproblems are replaced by their necessary and sufficient, Karush-Kuhn-Tucker (KKT) optimality conditions, resulting in the reformulation of the original multilevel problem as a single-level mathematical program with complementarity constraints (MPCC) with the complementarities handled using an exact penalty formulation. Performance analysis is carried out, and process conditions under which the CL-DRTO strategy significantly outperforms the traditional open-loop counterpart are identified.
The multilevel DRTO problem with a rigorous inclusion of the future MPC calculations significantly increases the size and solution time of the economic optimization problem. Next, we identify and analyze multiple closed-loop approximation techniques, namely, a hybrid formulation, a bilevel programming formulation, and an input clipping formulation applied to an unconstrained MPC algorithm. Performance analysis based on a linear dynamic system shows that the proposed approximation techniques are able to substantially reduce the size and solution time of the rigorous CL-DRTO problem, while largely retaining its original performance. Application to an industrially-based case study of a polystyrene production described by a nonlinear differential-algebraic equation (DAE) system is also presented.
Often large-scale industrial systems comprise multi-unit subsystems regulated under multiple local controllers that require systematic coordination between them. Utilization of closed-loop prediction in the CL-DRTO formulation is extended for application as a higher-level, centralized supervisory control strategy for coordination of a distributed MPC system. The advantage of the CL-DRTO coordination formulation is that it naturally considers interaction between the underlying MPC subsystems due to the embedded controller optimization subproblems while optimizing the overall process dynamics. In this case, we take advantage of the bilevel formulation to perform closed-loop prediction in two DRTO coordination schemes, with variations in the coordinator objective function based on dynamic economics and target tracking. Case study simulations demonstrate excellent performance in which the proposed coordination schemes minimize the impact of disturbance propagation originating from the upstream subsystem dynamics, and also reduce the magnitude of constraint violation through appropriate adjustment of the controller set-point trajectories. / Thesis / Doctor of Philosophy (PhD)
|
3 |
Optimisation dynamique en temps-réel d’un procédé de polymérisation par greffage / Dynamic real-time optimization of a polymer grafting processBousbia-Salah, Ryad 17 December 2018 (has links)
D'une manière schématique, l'optimisation dynamique de procédés consiste en trois étapes de base : (i) la modélisation, dans laquelle un modèle (phénoménologique) du procédé est construit, (ii) la formulation du problème, dans laquelle le critère de performance, les contraintes et les variables de décision sont définis, (iii) et la résolution, dans laquelle les profils optimaux des variables de décision sont déterminés. Il est important de souligner que ces profils optimaux garantissent l'optimalité pour le modèle mathématique utilisé. Lorsqu'ils sont appliqués au procédé, ces profils ne sont optimaux que lorsque le modèle décrit parfaitement le comportement du procédé, ce qui est très rarement le cas dans la pratique. En effet, les incertitudes sur les paramètres du modèle, les perturbations du procédé, et les erreurs structurelles du modèle font que les profils optimaux des variables de décision basés sur le modèle ne seront probablement pas optimaux pour le procédé. L'application de ces profils au procédé conduit généralement à la violation de certaines contraintes et/ou à des performances sous-optimales. Pour faire face à ces problèmes, l'optimisation dynamique en temps-réel constitue une approche tout à fait intéressante. L'idée générale de cette approche est d'utiliser les mesures expérimentales associées au modèle du procédé pour améliorer les profils des variables de décision de sorte que les conditions d'optimalité soient vérifiées sur le procédé (maximisation des performances et satisfaction des contraintes). En effet, pour un problème d'optimisation sous contraintes, les conditions d'optimalité possèdent deux parties : la faisabilité et la sensibilité. Ces deux parties nécessitent différents types de mesures expérimentales, à savoir les valeurs du critère et des contraintes, et les gradients du critère et des contraintes par rapport aux variables de décision. L'objectif de cette thèse est de développer une stratégie conceptuelle d'utilisation de ces mesures expérimentales en ligne de sorte que le procédé vérifie non seulement les conditions nécessaires, mais également les conditions suffisantes d'optimalité. Ce développement conceptuel va notamment s'appuyer sur les récents progrès en optimisation déterministe (les méthodes stochastiques ne seront pas abordées dans ce travail) de procédés basés principalement sur l'estimation des variables d'état non mesurées à l'aide d'un observateur à horizon glissant. Une méthodologie d'optimisation dynamique en temps réel (D-RTO) a été développée et appliquée à un réacteur batch dans lequel une réaction de polymérisation par greffage a lieu. L'objectif est de déterminer le profil temporel de température du réacteur qui minimise le temps opératoire tout en respectant des contraintes terminales sur le taux de conversion et l'efficacité de greffage / In a schematic way, process optimization consists of three basic steps: (i) modeling, in which a (phenomenological) model of the process is developed, (ii) problem formulation, in which the criterion of Performance, constraints and decision variables are defined, (iii) the resolution of the optimal problem, in which the optimal profiles of the decision variables are determined. It is important to emphasize that these optimal profiles guarantee the optimality for the model used. When applied to the process, these profiles are optimal only when the model perfectly describes the behavior of the process, which is very rarely the case in practice. Indeed, uncertainties about model parameters, process disturbances, and structural model errors mean that the optimal profiles of the model-based decision variables will probably not be optimal for the process. The objective of this thesis is to develop a conceptual strategy for using experimental measurements online so that the process not only satisfies the necessary conditions, but also the optimal conditions. This conceptual development will in particular be based on recent advances in deterministic optimization (the stochastic methods will not be dealt with in this work) of processes based on the estimation of the state variables that are not measured by a moving horizon observer. A dynamic real-time optimization (D-RTO) methodology has been developed and applied to a batch reactor where polymer grafting reactions take place. The objective is to determine the on-line reactor temperature profile that minimizes the batch time while meeting terminal constraints on the overall conversion rate and grafting efficiency
|
Page generated in 0.1115 seconds