1 |
Sum-rate maximization for active channelsJavad, Mirzaei 01 April 2013 (has links)
In conventional wireless channel models, there is no control on the gains of different
subchannels. In such channels, the transmitted signal undergoes attenuation and
phase shift and is subject to multi-path propagation effects. We herein refer to such
channels as passive channels. In this dissertation, we study the problem of joint power
allocation and channel design for a parallel channel which conveys information from a
source to a destination through multiple orthogonal subchannels. In such a link, the
power over each subchannel can be adjusted not only at the source but also at each
subchannel. We refer to this link as an active parallel channel. For such a channel, we
study the problem of sum-rate maximization under the assumption that the source
power as well as the energy of the active channel are constrained. This problem is
investigated for equal and unequal noise power at different subchannels.
For equal noise power over different subchannels, although the sum-rate maximization
problem is not convex, we propose a closed-form solution to this maximization
problem. An interesting aspect of this solution is that it requires only a subset of
the subchannels to be active and the remaining subchannels should be switched off.
This is in contrast with passive parallel channels with equal subchannel signal-tonoise-
ratios (SNRs), where water-filling solution to the sum-rate maximization under
a total source power constraint leads to an equal power allocation among all subchannels.
Furthermore, we prove that the number of active channels depends on the
product of the source and channel powers. We also prove that if the total power
available to the source and to the channel is limited, then in order to maximize the
sum-rate via optimal power allocation to the source and to the active channel, half
viii
ix
of the total available power should be allocated to the source and the remaining half
should be allocated to the active channel.
We extend our analysis to the case where the noise powers are unequal over different
subchannels. we show that the sum-rate maximization problem is not convex.
Nevertheless, with the aid of Karush-Kuhn-Tucker (KKT) conditions, we propose a
computationally efficient algorithm for optimal source and channel power allocation.
To this end, first, we obtain the feasible number of active subchannels. Then, we show
that the optimal solution can be obtained by comparing a finite number of points
in the feasible set and by choosing the best point which yields the best sum-rate
performance. The worst-case computational complexity of this solution is linear in
terms of number of subchannels. / UOIT
|
2 |
Closed-loop Dynamic Real-time Optimization for Cost-optimal Process OperationsJamaludin, Mohammad Zamry January 2016 (has links)
Real-time optimization (RTO) is a supervisory strategy in the hierarchical industrial process automation architecture in which economically optimal set-point targets are computed for the lower level advanced control system, which is typically model predictive control (MPC). Due to highly volatile market conditions, recent developments have considered transforming the conventional steady-state RTO to dynamic RTO (DRTO) to permit economic optimization during transient operation. Published DRTO literature optimizes plant input trajectories without taking into account the presence of the plant control system, constituting an open-loop DRTO (OL-DRTO) approach. The goal of this research is to develop a design framework for a DRTO system that optimizes process economics based on a closed-loop response prediction. We focus, in particular, on DRTO applied to a continuous process operation regulated under constrained MPC. We follow a two-layer DRTO/MPC configuration due to its close tie to the industrial process automation architecture.
We first analyze the effects of optimizing MPC closed-loop response dynamics at the DRTO level. A rigorous DRTO problem structure proposed in this thesis is in the form of a multilevel dynamic optimization problem, as it embeds a sequence of MPC optimization subproblems to be solved in order to generate the closed-loop prediction in the DRTO formulation, denoted here as a closed-loop DRTO (CL-DRTO) strategy. A simultaneous solution approach is applied in which the convex MPC optimization subproblems are replaced by their necessary and sufficient, Karush-Kuhn-Tucker (KKT) optimality conditions, resulting in the reformulation of the original multilevel problem as a single-level mathematical program with complementarity constraints (MPCC) with the complementarities handled using an exact penalty formulation. Performance analysis is carried out, and process conditions under which the CL-DRTO strategy significantly outperforms the traditional open-loop counterpart are identified.
The multilevel DRTO problem with a rigorous inclusion of the future MPC calculations significantly increases the size and solution time of the economic optimization problem. Next, we identify and analyze multiple closed-loop approximation techniques, namely, a hybrid formulation, a bilevel programming formulation, and an input clipping formulation applied to an unconstrained MPC algorithm. Performance analysis based on a linear dynamic system shows that the proposed approximation techniques are able to substantially reduce the size and solution time of the rigorous CL-DRTO problem, while largely retaining its original performance. Application to an industrially-based case study of a polystyrene production described by a nonlinear differential-algebraic equation (DAE) system is also presented.
Often large-scale industrial systems comprise multi-unit subsystems regulated under multiple local controllers that require systematic coordination between them. Utilization of closed-loop prediction in the CL-DRTO formulation is extended for application as a higher-level, centralized supervisory control strategy for coordination of a distributed MPC system. The advantage of the CL-DRTO coordination formulation is that it naturally considers interaction between the underlying MPC subsystems due to the embedded controller optimization subproblems while optimizing the overall process dynamics. In this case, we take advantage of the bilevel formulation to perform closed-loop prediction in two DRTO coordination schemes, with variations in the coordinator objective function based on dynamic economics and target tracking. Case study simulations demonstrate excellent performance in which the proposed coordination schemes minimize the impact of disturbance propagation originating from the upstream subsystem dynamics, and also reduce the magnitude of constraint violation through appropriate adjustment of the controller set-point trajectories. / Thesis / Doctor of Philosophy (PhD)
|
3 |
Programação em dois níveis: reformulação utilizando as condições KKT / Bilevel programming: reformulation using KKT conditions.Sobral, Francisco Nogueira Calmon 22 February 2008 (has links)
Em um problema de natureza hierárquica, o nível mais influente toma certas decisões que afetam o comportamento dos níveis inferiores. Cada decisão do nível mais influente é considerada como fixa pelos níveis inferiores, que, com tais informações, tomam decisões que maximizam seus objetivos. Essas decisões podem influenciar os resultados obtidos pelo nível superior, que, por sua vez, também anseia pela decisão ótima. Em programação matemática, este problema é modelado como um problema de programação em níveis. Neste trabalho, consideramos uma classe particular de problemas de programação em níveis: os problemas de programação matemática em dois níveis. Estudamos uma técnica de resolução que consiste em substituir o problema do nível inferior por suas condições necessárias de primeira ordem, que podem ser formuladas de diversas maneiras, conforme as restrições de complementaridade são modificadas. O novo problema torna-se um problema de programação não linear e pode ser resolvido com algoritmos clássicos de otimização. Com o auxílio de condições de otimalidade de primeira e segunda ordem mostramos as relações entre o problema original e o problema reformulado. Aplicamos a técnica a problemas encontrados na literatura, analisamos o seu comportamento e apresentamos estratégias para eliminar certos inconvenientes encontrados. / In problems of hierarchical nature, the choices made by the most influential level - the so-called leader - affect the behavior of the lower levels. For each one of the leader\'s decisions there is a response from the lower levels, which maximizes the value of their respective objectives. These optimal choices, in return, may have influence in the results achieved by the leader, which also wants to make the optimal choices. In mathematical programming, this kind of problem is described as a multilevel programming problem. The present work considers a specific kind of multilevel problem: the bilevel mathematical problem. We study a resolution technique which consists in replacing the lower level problem by its necessary first order conditions, which can be formulated in various ways, as complementarity constraints occur and are modified. The new reformulated problem is a nonlinear programming problem which can be solved by classical optimization methods. Using first and second order optimality conditions, we show the relations between the original bilevel problem and the reformulated problem. We apply the described technique to solve a set of bilevel problems taken from the literature, analyse their behavior and discuss strategies to prevent undesirable difficulties that may arise.
|
4 |
Programação em dois níveis: reformulação utilizando as condições KKT / Bilevel programming: reformulation using KKT conditions.Francisco Nogueira Calmon Sobral 22 February 2008 (has links)
Em um problema de natureza hierárquica, o nível mais influente toma certas decisões que afetam o comportamento dos níveis inferiores. Cada decisão do nível mais influente é considerada como fixa pelos níveis inferiores, que, com tais informações, tomam decisões que maximizam seus objetivos. Essas decisões podem influenciar os resultados obtidos pelo nível superior, que, por sua vez, também anseia pela decisão ótima. Em programação matemática, este problema é modelado como um problema de programação em níveis. Neste trabalho, consideramos uma classe particular de problemas de programação em níveis: os problemas de programação matemática em dois níveis. Estudamos uma técnica de resolução que consiste em substituir o problema do nível inferior por suas condições necessárias de primeira ordem, que podem ser formuladas de diversas maneiras, conforme as restrições de complementaridade são modificadas. O novo problema torna-se um problema de programação não linear e pode ser resolvido com algoritmos clássicos de otimização. Com o auxílio de condições de otimalidade de primeira e segunda ordem mostramos as relações entre o problema original e o problema reformulado. Aplicamos a técnica a problemas encontrados na literatura, analisamos o seu comportamento e apresentamos estratégias para eliminar certos inconvenientes encontrados. / In problems of hierarchical nature, the choices made by the most influential level - the so-called leader - affect the behavior of the lower levels. For each one of the leader\'s decisions there is a response from the lower levels, which maximizes the value of their respective objectives. These optimal choices, in return, may have influence in the results achieved by the leader, which also wants to make the optimal choices. In mathematical programming, this kind of problem is described as a multilevel programming problem. The present work considers a specific kind of multilevel problem: the bilevel mathematical problem. We study a resolution technique which consists in replacing the lower level problem by its necessary first order conditions, which can be formulated in various ways, as complementarity constraints occur and are modified. The new reformulated problem is a nonlinear programming problem which can be solved by classical optimization methods. Using first and second order optimality conditions, we show the relations between the original bilevel problem and the reformulated problem. We apply the described technique to solve a set of bilevel problems taken from the literature, analyse their behavior and discuss strategies to prevent undesirable difficulties that may arise.
|
5 |
Despacho ativo com restrição na transmissão via método de barreira logarítmica / Active despach with transmission restriction using logarithmic barrier methodPereira, Leandro Sereno 16 December 2002 (has links)
Este trabalho apresenta uma abordagem do método da função barreira logarítmica (MFBL) para a resolução do problema de fluxo de potência ótimo (FPO). A pesquisa fundamenta-se metodologicamente na função barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). Para a solução do sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, utiliza-se o método de Newton. Na implementação computacional utiliza-se técnicas de esparsidade. Através dos resultados numéricos dos testes realizados em 5 sistemas (3, 8, 14, 30 e 118 barras) evidencia-se o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on logarithmic barrier function method to solving the optimal power flow (OPF) problem. Search was based on the logarithmic barrier function and first order conditions of Karush-Kuhn-Tucker (KKT). To solve the equation system, obtained from the stationary conditions of the Lagrangian function, is used the Newton method. Implementation is performed using sparsity techniques. The numerical results, carried out in five systems (3, 8, 14, 30 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
6 |
A função barreira logarítmica associada ao método de Newton modificado para a resolução do problema de fluxo de potência ótimo / The logarithmic barrier function associate Newton modified method for solving the optimal power flow problemSousa, Vanusa Alves de 12 December 2001 (has links)
Este trabalho descreve uma abordagem do método primal-dual barreira logarítmica (MPDBL) associado ao método de Newton modificado para a resolução do problema de fluxo barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). O sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, foi resolvido pelo método de Newton modificado. Na implementação computacional foram usadas as técnicas de esparsidade. Os resultados numéricos dos testes realizados em 5 sistemas (3, 14, 30, 57 e 118 barras) evidenciam o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on primal-dual logarithmic barrier for solving the optimal power flow problem (OPF). The investigation was based on the logarithmic barrier function and Karush-Kuhn-Tucker (KKT) first-order necessary conditions. The equation system, obtained from the stationary conditions of the Lagrangian function, was solved using the Newton\'s modified method. The implementation was performed using sparsity techniques. The numerical results, carried out in five systems (3, 14,30, 57 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
7 |
Aspects of Interface between Information Theory and Signal Processing with Applications to Wireless CommunicationsPark, Sang Woo 14 March 2013 (has links)
This dissertation studies several aspects of the interface between information theory and signal processing. Several new and existing results in information theory are researched from the perspective of signal processing. Similarly, some fundamental results in signal processing and statistics are studied from the information theoretic viewpoint.
The first part of this dissertation focuses on illustrating the equivalence between Stein's identity and De Bruijn's identity, and providing two extensions of De Bruijn's identity. First, it is shown that Stein's identity is equivalent to De Bruijn's identity in additive noise channels with specific conditions. Second, for arbitrary but fixed input and noise distributions, and an additive noise channel model, the first derivative of the differential entropy is expressed as a function of the posterior mean, and the second derivative of the differential entropy is expressed in terms of a function of Fisher information. Several applications over a number of fields, such as statistical estimation theory, signal processing and information theory, are presented to support the usefulness of the results developed in Section 2.
The second part of this dissertation focuses on three contributions. First, a connection between the result, proposed by Stoica and Babu, and the recent information theoretic results, the worst additive noise lemma and the isoperimetric inequality for entropies, is illustrated. Second, information theoretic and estimation theoretic justifications for the fact that the Gaussian assumption leads to the largest Cramer-Rao lower bound (CRLB) is presented. Third, a slight extension of this result to the more general framework of correlated observations is shown.
The third part of this dissertation concentrates on deriving an alternative proof for an extremal entropy inequality (EEI), originally proposed by Liu and Viswanath. Compared with the proofs, presented by Liu and Viswanath, the proposed alternative proof is simpler, more direct, and more information-theoretic. An additional application for the extremal inequality is also provided. Moreover, this section illustrates not only the usefulness of the EEI but also a novel method to approach applications such as the capacity of the vector Gaussian broadcast channel, the lower bound of the achievable rate for distributed source coding with a single quadratic distortion constraint, and the secrecy capacity of the Gaussian wire-tap channel.
Finally, a unifying variational and novel approach for proving fundamental information theoretic inequalities is proposed. Fundamental information theory results such as the maximization of differential entropy, minimization of Fisher information (Cramer-Rao inequality), worst additive noise lemma, entropy power inequality (EPI), and EEI are interpreted as functional problems and proved within the framework of calculus of variations. Several extensions and applications of the proposed results are briefly mentioned.
|
8 |
Optimierung in normierten RäumenMehlitz, Patrick 10 August 2013 (has links) (PDF)
Die Arbeit abstrahiert bekannte Konzepte der endlichdimensionalen Optimierung im Hinblick auf deren Anwendung in Banachräumen. Hierfür werden zunächst grundlegende Elemente der Funktionalanalysis wie schwache Konvergenz, Dualräume und Reflexivität vorgestellt. Anschließend erfolgt eine kurze Einführung in die Thematik der Fréchet-Differenzierbarkeit und eine Abstraktion des Begriffs der partiellen Ordnungsrelation in normierten Räumen. Nach der Formulierung eines allgemeinen Existenzsatzes für globale Optimallösungen von abstrakten Optimierungsaufgaben werden notwendige Optimalitätsbedingungen vom Karush-Kuhn-Tucker-Typ hergeleitet. Abschließend wird eine hinreichende Optimalitätsbedingung vom Karush-Kuhn-Tucker-Typ unter verallgemeinerten Konvexitätsvoraussetzungen verifiziert.
|
9 |
A função barreira logarítmica associada ao método de Newton modificado para a resolução do problema de fluxo de potência ótimo / The logarithmic barrier function associate Newton modified method for solving the optimal power flow problemVanusa Alves de Sousa 12 December 2001 (has links)
Este trabalho descreve uma abordagem do método primal-dual barreira logarítmica (MPDBL) associado ao método de Newton modificado para a resolução do problema de fluxo barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). O sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, foi resolvido pelo método de Newton modificado. Na implementação computacional foram usadas as técnicas de esparsidade. Os resultados numéricos dos testes realizados em 5 sistemas (3, 14, 30, 57 e 118 barras) evidenciam o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on primal-dual logarithmic barrier for solving the optimal power flow problem (OPF). The investigation was based on the logarithmic barrier function and Karush-Kuhn-Tucker (KKT) first-order necessary conditions. The equation system, obtained from the stationary conditions of the Lagrangian function, was solved using the Newton\'s modified method. The implementation was performed using sparsity techniques. The numerical results, carried out in five systems (3, 14,30, 57 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
10 |
Despacho ativo com restrição na transmissão via método de barreira logarítmica / Active despach with transmission restriction using logarithmic barrier methodLeandro Sereno Pereira 16 December 2002 (has links)
Este trabalho apresenta uma abordagem do método da função barreira logarítmica (MFBL) para a resolução do problema de fluxo de potência ótimo (FPO). A pesquisa fundamenta-se metodologicamente na função barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). Para a solução do sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, utiliza-se o método de Newton. Na implementação computacional utiliza-se técnicas de esparsidade. Através dos resultados numéricos dos testes realizados em 5 sistemas (3, 8, 14, 30 e 118 barras) evidencia-se o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on logarithmic barrier function method to solving the optimal power flow (OPF) problem. Search was based on the logarithmic barrier function and first order conditions of Karush-Kuhn-Tucker (KKT). To solve the equation system, obtained from the stationary conditions of the Lagrangian function, is used the Newton method. Implementation is performed using sparsity techniques. The numerical results, carried out in five systems (3, 8, 14, 30 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
Page generated in 0.0814 seconds