Spelling suggestions: "subject:"primaldual logarithmic"" "subject:"broaddual logarithmic""
1 |
Funções penalidade para variáveis discretas e o problema de fluxo de potência ótimo reativo /Mazal, Camila Mara Nardello January 2019 (has links)
Orientador: Edméa Cássia Baptista / Resumo: O problema de fluxo de potência ótimo reativo é representado matematicamente por um problema de otimização não linear, restrito, não convexo, de grande porte e com variáveis de controle contínuas e discretas. A representação dos taps dos transformadores em fase e das susceptâncias shunt dos bancos de capacitores/reatores do sistema como variáveis discretas, torna o problema mais próximo da realidade. Entretanto, problemas de otimização não linear com variáveis discretas apresentam dificuldades em sua resolução, as quais são impostas pelas variáveis discretas. Uma das técnicas para sua resolução consiste em utilizar funções penalidades para tratar as variáveis discretas. Desta forma, transforma-se o problema discreto em uma sequência de problemas contínuos, e o método primal-dual barreira logarítmica pode ser utilizado para resolver esses problemas. Neste trabalho o objetivo é analisar a convergência do método de penalidade para variáveis discretas aplicado ao problema de fluxo de potência ótimo reativo, ao se utilizar diferentes funções penalidade e a combinação delas. Testes computacionais foram realizados com um exemplo númérico e com os sistemas elétricos IEEE 14, 30 e 118 barras, utilizando o pacote de otimização KNITRO em interface com o software GAMS. Os resultados demonstram que a combinação de diferentes funções penalidade para o tratamento das variáveis discretas é promissora. / Abstract: The reactive optimal power flow problem is mathematically represented by a nonlinear, constrained, nonconvex, large scale optimization problem with continuous and discrete control variables. The representation of the in-phase transformers taps and/or the shunt susceptances of capacitor/reactor Banks of the system, as discrete variables, make the problem closer to reality. Nonlinear optimization problems with discrete variables are difficulty to solve, due to the discrete variables. One of the soluction techniques consist in using penalty functions to treat the discrete variables. Thus, the discrete problem is transformed in a sequence of continuous problems, and the primal dual logarithmic barrier method can be used to solve these problems. In this work the objective is to analyze the convergence of the penalty method for discrete variables applied to the reactive optimal power flow problem, by using different penalty functions and the mixture of them. Computational tests have been carried out with a numerical example and with the IEEE 14, 30 and 118 buses electrical systems, using the KNITRO optimization package in interface with the GAMS software. The results show that a mixture of different penalty functions for treatment of discrete variable is advantageous. / Mestre
|
2 |
Estudo de técnicas eficientes para a resolução do problema de fluxo de potência para sistemas de distribuição radial / Study of efficient techniques for the resolution of power flow problem for distribution radial systemsCarvalho, Marcus Rodrigo 02 June 2006 (has links)
Este trabalho descreve uma abordagem do método primal-dual barreira logarítmica (MPDBL) associado ao método de Newton modificado para a resolução do problema de fluxo de potência para sistemas de distribuição radial. Também foi realizado um estudo comparativo com duas técnicas clássicas de solução do problema de fluxo potência para redes de distribuição radial. São os métodos: Backward/Forward Sweep e o método proposto por M. Baran e F. Wu, que é baseado na técnica de Newton-Raphson. Este método utiliza uma matriz Jacobiana modificada que atende a característica radial dos sistemas de distribuição. Nos testes comparativos serão considerados todos os parâmetros do sistema. Os algoritmos de solução serão analisados em suas propriedades de convergência e será realizado um teste de robustez. Os resultados dos testes realizados em 4 sistemas (4, 10, 34 e 70 barras) e o teste comparativo entre os métodos evidenciam a melhor metodologia na solução do problema de fluxo de potência para sistemas radiais / This work describes an approach on primal-dual logarithmic barrier method (PDLBM) associate to the method of Newton modified for the resolution of the problem of power flow for radial distribution systems. Also a comparative study with two classic techniques of solution of the flow problem was carried through power for nets of radial distribution. They are the methods: Backward/Forward Sweep and the method considered for M. Baran and F. Wu, that is based on the technique of Newton-Raphson. This method uses modified Jacobiana matrix that takes care of the radial characteristic of the distribution systems. In the comparative tests all will be considered the parameters of the system. The solution algorithms will be analyzed in its properties of convergence and will be carried through a robustness test. The results of the tests carried through in 4 systems (4, 10, 34 and 70 bus) and the comparative test between the methods evidence the best methodology in the solution of the problem of power flow for radial systems
|
3 |
Alocação de unidades de geração termoelétrica em sistemas elétricos de potência / Thermoelectrical generation allocation in electric power systemsCanola, Saulo Ricardo 16 January 2006 (has links)
Este trabalho tem como objetivo realizar um estudo de alocação de unidades termoelétricas em sistemas elétricos de potência (SEP). O fluxo de potencia ótimo (FPO) foi utilizado para se obter o ponto ótimo de operação para o sistema e os multiplicadores de Lagrange associados às restrições. Os multiplicadores de Lagrange indicam a sensibilidade entre a função objetivo e a restrição a ele associada. Esta sensibilidade indica, quais as barras do sistema, são candidatas à alocação de novas usinas termoelétricas. Testes nos sistemas de 5 barras, IEEE 14 barras, IEEE 30 barras, equivalente CESP 440 kV de 53 barras e IEEE 118 barras comprovam a eficiência da abordagem, a qual poderá ser utilizada em estudos de planejamento da expansão do sistema. / The aim of this paper is to present a study of thermoelectrical generation allocation in electric power systems. The optimal power flow (OPF) was used to evaluate the optimal operation point for the power system and also Lagrange multipliers associated with the constraints. The Lagrange multipliers are the sensitivity between the objective function and its constraints. This sensitivity is used to verify in a power system where is the best place to incentive the allocation of new thermoelectrical power plants. Tests on the systems: 5 buses, IEEE 14 buses, IEEE 30 buses, equivalent CESP 440kV 53 buses and IEEE 118 buses showed the efficiency of the presented approach. This method of analyzing the system can be used in study of expansion planning system.
|
4 |
Estudos de casos em sistemas de energia elétrica por meio do fluxo de potência ótimo e da análise de sensibilidade / Studies of cases in power systems by optimal power flow and sensitivity analysisSouza, Alessandra Macedo de 21 February 2005 (has links)
Este trabalho propõe estudos de casos em sistemas de energia elétrica por meio do Fluxo de Potência Ótimo (FPO) e da Análise de Sensibilidade em diferentes cenários de operação. Para isso, foram obtidos dados teóricos, a partir de levantamento bibliográfico, que explicitaram os conceitos de otimização aplicados ao sistema estático de energia elétrica. A pesquisa fundamentou-se metodologicamente no método primal-dual barreira logarítmica e nas condições necessárias de primeira-ordem de Karush-Kuhn-Tucker (KKT) para o problema de FPO, e no teorema proposto por Fiacco (1976) para a Análise de Sensibilidade. Os sistemas de equações resultantes das condições de estacionaridade, da função Lagrangiana, foram resolvidos pelo método de Newton. Na implementação computacional foram usadas técnicas de esparsidade. Estudos de casos foram realizados nos sistemas 3, IEEE 14, 30, 118, 300 barras e no equivalente CESP 440 kV com 53 barras, em que foi verificada a eficiência das técnicas apresentadas. / This work proposes a study of cases in power systems by Optimal Power Flow (OPF) and Sensitivity Analysis in different operation scenarios. For this purpose, theoretical data were obtained, starting from a bibliographical review, which enlightened the optimization concepts applied to the static system of electrical energy. The research was methodologically based on the primal-dual logarithmic barrier method and in the first-order necessary Karush-Kuhn-Tucker conditions to the OPF problem and in the theorem proposed by Fiacco (1976) to the Sensitivity Analysis. The equation sets generated by the first-order necessary conditions of the Lagrangian function, were solved by Newton\'s method. In the computational implementation, sparsity techniques were used. Studies of cases were carried out in the 3, IEEE 14, 30, 118, 300 buses and in the equivalent CESP 440 kV 53 bus, where the efficiency of the presented techniques was verified.
|
5 |
Despacho ativo com restrição na transmissão via método de barreira logarítmica / Active despach with transmission restriction using logarithmic barrier methodPereira, Leandro Sereno 16 December 2002 (has links)
Este trabalho apresenta uma abordagem do método da função barreira logarítmica (MFBL) para a resolução do problema de fluxo de potência ótimo (FPO). A pesquisa fundamenta-se metodologicamente na função barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). Para a solução do sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, utiliza-se o método de Newton. Na implementação computacional utiliza-se técnicas de esparsidade. Através dos resultados numéricos dos testes realizados em 5 sistemas (3, 8, 14, 30 e 118 barras) evidencia-se o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on logarithmic barrier function method to solving the optimal power flow (OPF) problem. Search was based on the logarithmic barrier function and first order conditions of Karush-Kuhn-Tucker (KKT). To solve the equation system, obtained from the stationary conditions of the Lagrangian function, is used the Newton method. Implementation is performed using sparsity techniques. The numerical results, carried out in five systems (3, 8, 14, 30 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
6 |
Solução do problema de fluxo de potência ótimo com restrição de segurança e controles discretos utilizando o método primal-dual barreira logarítmica / Solution of the optimal power flow problem with security constraint and discrete controls using the primal-dual logarithmic barrier methodCosta, Marina Teixeira [UNESP] 16 December 2016 (has links)
Submitted by Marina Teixeira Costa null (marinateixeiracosta@gmail.com) on 2017-02-14T14:27:15Z
No. of bitstreams: 1
Dissertação MARINA 12.pdf: 1807218 bytes, checksum: 95bc28b832360cf51847512b47b234d8 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-14T15:29:56Z (GMT) No. of bitstreams: 1
costa_mt_me_bauru.pdf: 1807218 bytes, checksum: 95bc28b832360cf51847512b47b234d8 (MD5) / Made available in DSpace on 2017-02-14T15:29:56Z (GMT). No. of bitstreams: 1
costa_mt_me_bauru.pdf: 1807218 bytes, checksum: 95bc28b832360cf51847512b47b234d8 (MD5)
Previous issue date: 2016-12-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O problema de Fluxo de Potência Ótimo determina a melhor condição de operação de um sistema elétrico de potência. Há diferentes classes de problemas de Fluxo de Potência Ótimo de acordo com os tipos de funções a serem otimizadas, e os conjuntos de controles e de restrições utilizados. Dentre elas, dá-se destaque ao problema de Fluxo de Potência Ótimo com Restrição de Segurança, o qual é uma importante ferramenta para os Operadores dos Sistemas de Transmissão, tanto para o planejamento operacional, quanto para a precificação da energia. Seu objetivo é minimizar os custos operacionais de geração de energia levando em consideração as restrições decorrentes da operação do sistema sob um conjunto de contingências. Ele é formulado como um problema de otimização não linear, não-convexo de grande porte, com variáveis contínuas e discretas. Neste trabalho investiga-se este problema em relação à sua formulação, dificuldades computacionais e método de solução. Para um tratamento do problema mais próximo à realidade adotam-se alguns controles como variáveis discretas, ou seja, os taps dos transformadores. Estes são tratados através de um método que penaliza a função objetivo quando as variáveis discretas assumem valores não discretos. Desta forma, o problema não linear discreto é transformado em um problema contínuo e o método Primal-Dual Barreira Logarítmica é utilizado em sua resolução. Testes computacionais são apresentados com o problema de Fluxo de Potência Ótimo com Restrição de Segurança associado ao sistema teste IEEE 14 barras em três etapas de teste. Os resultados obtidos e as comparações realizadas comprovam a eficiência do método de resolução escolhido / The Optimum Power Flow problem determines the best operating condition of an electric power system. There are different classes of Optimal Power Flow problems according to the types of functions to be optimized, and the sets of controls and constraints used. Among them, the problem of Optimal Power Flow with Security Constraint is highlighted, which is an important tool for the Transmission System operators, both for operational planning and for energy pricing. Its objective is to minimize the operational costs of power generation taking into account the constraints arising from the operation of the system under a set of contingencies. It is formulated as a nonlinear, nonconvex large optimization problem, of continuous and discrete variables. In this work, the problem in relation to its formulation, computational difficulties and solution method is investigated. For a treatment of the problem closest to the reality, some controls such as discrete variables, i.e. the taps of the transformers, are used. These are treated by a method that penalizes the objective function when the discrete variables assume non-discrete values. Thus, the discrete nonlinear problem is transformed into a continuous problem and the Primal-Dual Logarithmic Barrier method is used in its resolution. Computational tests are performed with the optimal power flow problem with security constraint associated with the test system of IEEE 14 bars in three test stages. The obtained results and the realized comparisons prove the efficiency of the chosen resolution method.
|
7 |
Alocação de unidades de geração termoelétrica em sistemas elétricos de potência / Thermoelectrical generation allocation in electric power systemsSaulo Ricardo Canola 16 January 2006 (has links)
Este trabalho tem como objetivo realizar um estudo de alocação de unidades termoelétricas em sistemas elétricos de potência (SEP). O fluxo de potencia ótimo (FPO) foi utilizado para se obter o ponto ótimo de operação para o sistema e os multiplicadores de Lagrange associados às restrições. Os multiplicadores de Lagrange indicam a sensibilidade entre a função objetivo e a restrição a ele associada. Esta sensibilidade indica, quais as barras do sistema, são candidatas à alocação de novas usinas termoelétricas. Testes nos sistemas de 5 barras, IEEE 14 barras, IEEE 30 barras, equivalente CESP 440 kV de 53 barras e IEEE 118 barras comprovam a eficiência da abordagem, a qual poderá ser utilizada em estudos de planejamento da expansão do sistema. / The aim of this paper is to present a study of thermoelectrical generation allocation in electric power systems. The optimal power flow (OPF) was used to evaluate the optimal operation point for the power system and also Lagrange multipliers associated with the constraints. The Lagrange multipliers are the sensitivity between the objective function and its constraints. This sensitivity is used to verify in a power system where is the best place to incentive the allocation of new thermoelectrical power plants. Tests on the systems: 5 buses, IEEE 14 buses, IEEE 30 buses, equivalent CESP 440kV 53 buses and IEEE 118 buses showed the efficiency of the presented approach. This method of analyzing the system can be used in study of expansion planning system.
|
8 |
A função barreira logarítmica associada ao método de Newton modificado para a resolução do problema de fluxo de potência ótimo / The logarithmic barrier function associate Newton modified method for solving the optimal power flow problemSousa, Vanusa Alves de 12 December 2001 (has links)
Este trabalho descreve uma abordagem do método primal-dual barreira logarítmica (MPDBL) associado ao método de Newton modificado para a resolução do problema de fluxo barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). O sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, foi resolvido pelo método de Newton modificado. Na implementação computacional foram usadas as técnicas de esparsidade. Os resultados numéricos dos testes realizados em 5 sistemas (3, 14, 30, 57 e 118 barras) evidenciam o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on primal-dual logarithmic barrier for solving the optimal power flow problem (OPF). The investigation was based on the logarithmic barrier function and Karush-Kuhn-Tucker (KKT) first-order necessary conditions. The equation system, obtained from the stationary conditions of the Lagrangian function, was solved using the Newton\'s modified method. The implementation was performed using sparsity techniques. The numerical results, carried out in five systems (3, 14,30, 57 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
9 |
Estudos de casos em sistemas de energia elétrica por meio do fluxo de potência ótimo e da análise de sensibilidade / Studies of cases in power systems by optimal power flow and sensitivity analysisAlessandra Macedo de Souza 21 February 2005 (has links)
Este trabalho propõe estudos de casos em sistemas de energia elétrica por meio do Fluxo de Potência Ótimo (FPO) e da Análise de Sensibilidade em diferentes cenários de operação. Para isso, foram obtidos dados teóricos, a partir de levantamento bibliográfico, que explicitaram os conceitos de otimização aplicados ao sistema estático de energia elétrica. A pesquisa fundamentou-se metodologicamente no método primal-dual barreira logarítmica e nas condições necessárias de primeira-ordem de Karush-Kuhn-Tucker (KKT) para o problema de FPO, e no teorema proposto por Fiacco (1976) para a Análise de Sensibilidade. Os sistemas de equações resultantes das condições de estacionaridade, da função Lagrangiana, foram resolvidos pelo método de Newton. Na implementação computacional foram usadas técnicas de esparsidade. Estudos de casos foram realizados nos sistemas 3, IEEE 14, 30, 118, 300 barras e no equivalente CESP 440 kV com 53 barras, em que foi verificada a eficiência das técnicas apresentadas. / This work proposes a study of cases in power systems by Optimal Power Flow (OPF) and Sensitivity Analysis in different operation scenarios. For this purpose, theoretical data were obtained, starting from a bibliographical review, which enlightened the optimization concepts applied to the static system of electrical energy. The research was methodologically based on the primal-dual logarithmic barrier method and in the first-order necessary Karush-Kuhn-Tucker conditions to the OPF problem and in the theorem proposed by Fiacco (1976) to the Sensitivity Analysis. The equation sets generated by the first-order necessary conditions of the Lagrangian function, were solved by Newton\'s method. In the computational implementation, sparsity techniques were used. Studies of cases were carried out in the 3, IEEE 14, 30, 118, 300 buses and in the equivalent CESP 440 kV 53 bus, where the efficiency of the presented techniques was verified.
|
10 |
A função barreira logarítmica associada ao método de Newton modificado para a resolução do problema de fluxo de potência ótimo / The logarithmic barrier function associate Newton modified method for solving the optimal power flow problemVanusa Alves de Sousa 12 December 2001 (has links)
Este trabalho descreve uma abordagem do método primal-dual barreira logarítmica (MPDBL) associado ao método de Newton modificado para a resolução do problema de fluxo barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). O sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, foi resolvido pelo método de Newton modificado. Na implementação computacional foram usadas as técnicas de esparsidade. Os resultados numéricos dos testes realizados em 5 sistemas (3, 14, 30, 57 e 118 barras) evidenciam o potencial desta metodologia na solução do problema de FPO. / This work describes an approach on primal-dual logarithmic barrier for solving the optimal power flow problem (OPF). The investigation was based on the logarithmic barrier function and Karush-Kuhn-Tucker (KKT) first-order necessary conditions. The equation system, obtained from the stationary conditions of the Lagrangian function, was solved using the Newton\'s modified method. The implementation was performed using sparsity techniques. The numerical results, carried out in five systems (3, 14,30, 57 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.
|
Page generated in 0.0762 seconds