• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

Sakaguchi, K, Zeng, X, Leung, LR, Shao, P 01 December 2016 (has links)
Land carbon sensitivity to atmospheric CO2 concentration (bL) and climate warming (gL) is a crucial part of carbon-climate feedbacks that affect the magnitude of future warming. Although these sensitivities can be estimated by earth system models, their dependence on model representation of land carbon dynamics and the inherent model assumptions has rarely been investigated. Using the widely used Community Land Model version 4 as an example, we examine how bL and gL vary with prescribed versus dynamic vegetation covers. Both sensitivities are found to be larger with dynamic compared to prescribed vegetation on decadal timescale in the late twentieth century, with a more robust difference in gL. The latter is a result of dynamic vegetation model deficiencies in representing the competitions between deciduous versus evergreen trees and tree versus grass over the tropics and subtropics. The biased vegetation cover changes the regional characteristics of carbon-nitrogen cycles such that plant productivity responds less strongly to the enhancement of nitrogen mineralization with warming, so more carbon is lost to the atmosphere with rising temperature. The result calls for systematic evaluations of land carbon sensitivities with varying assumptions for land cover representations to help prioritize development effort and constrain uncertainties in carbon-climate feedbacks.
2

Modeling terrestrial carbon cycle during the Last Glacial Maximum / Modélisation du cycle du carbone terrestre au cours du dernier maximum glaciaire

Zhu, Dan 30 September 2016 (has links)
Pendant les transitions glaciaire-interglaciaires,on observe une augmentation en partie abrupte de près de 100 ppm du CO2atmosphérique, indiquant une redistribution majeure entre les réservoirs de carbone des continents, de l'océan et de l'atmosphère.Expliquer les flux de carbone associés à ces transitions est un défi scientifique, qui nécessite une meilleure compréhension du stock de carbone ‘initial’ dans la biosphère terrestre au cours de la période glaciaire. L’objectif de cette thèse est d’améliorer la compréhension du fonctionnement des écosystèmes terrestres et des stocks de carbone au cours du dernier maximum glaciaire (LGM, il y a environ21.000 ans), à travers plusieurs nouveaux développements dans le modèle global de végétation ORCHIDEE-MICT, pour améliorer la représentation de la dynamique de la végétation, la dynamique du carbone dans le sol du pergélisol et les interactions entre les grands herbivores et la végétation dans le modèle de la surface terrestre.Pour la première partie, la représentation de la dynamique de la végétation dans ORCHIDEEMICT pour les régions des moyennes et hautes latitudes, a été calibrée et évaluée avec un ensemble de données spatiales de classes de végétation, production primaire brute, et de biomasse forestière pour la période actuelle.Des améliorations sont obtenues avec la nouvelle version du modèle dans la distribution des groupes fonctionnels de végétation. Ce modèle a ensuite été appliqué pour simuler la distribution de la végétation au cours de laLGM, montrant un accord général avec les reconstructions ponctuelles basées sur des données de pollen et de macro-fossiles de plantes.Une partie du pergélisol (sols gelés en permanence) contient des sédiments épais,riches en glace et en matières organiques appelés Yedoma, qui contiennent de grandes quantités de carbone organique, et sont des reliques des stocks de carbone du Pléistocène.Ces sédiments ont été accumulés sous des climats glaciaires. Afin de simuler l'accumulation du carbone dans les dépôts de Yedoma, j’ai proposé une nouvelle paramétrisation de la sédimentation verticale dans le module de carbone dans le sol de ORCHIDEE-MICT. L'inclusion de ce processus a permis de reproduire la distribution verticale de carbone observée sur des sites de Yedoma. Une première estimation du stock de carbone dans le pergélisol au cours du LGM est obtenue, de l’ordre de ~ 1550 PgC, dont 390 ~446 PgC sous forme de Yedoma encore intacts aujourd’hui (1,3 millions de km2).Potentiellement, une plus grande surface de Yedoma pourrait être présente pendant leLGM, qui a disparue lors de la déglaciation.Pour la troisième partie, à la lumière des impacts écologiques des grands animaux, et le rôle potentiel des méga-herbivores comme une force qui a maintenu les écosystèmes steppiques pendant les périodes glaciaires, j'ai incorporé un modèle de d’herbivores dans ORCHIDEE-MICT, basé sur des équations physiologiques pour l'apport énergétique et les dépenses, le taux de natalité, et le taux de mortalité pour les grands herbivores sauvages.Le modèle a montré des résultats raisonnables de biomasse des grands herbivores en comparaison avec des observations disponibles aujourd’hui sur des réserves naturelles. Nous avons simulé un biome de prairies très étendu pendant le LGM avec une densité importante de grands herbivores. Les effets des grands herbivores sur la végétation et le cycle du carbone du LGM ont été discutés, y compris la réduction de la couverture forestière, et la plus grande productivité des prairies.Enfin, j’ai réalisé une estimation préliminaire du stock total de carbone dans le permafrost pendant le LGM, après avoir tenu compte des effets des grands herbivores et en faisant une extrapolation de l'étendue spatiale des sédiments de type Yedoma basée sur des analogues climatiques et topographiques qui sont similaires à la région de Yedoma actuelle. / During the repeated glacialinterglacialtransitions, there has been aconsistent and partly abrupt increase of nearly100 ppm in atmospheric CO2, indicating majorredistributions among the carbon reservoirs ofland, ocean and atmosphere. A comprehensiveexplanation of the carbon fluxes associatedwith the transitions is still missing, requiring abetter understanding of the potential carbonstock in terrestrial biosphere during the glacialperiod. In this thesis, I aimed to improve theunderstanding of terrestrial carbon stocks andcarbon cycle during the Last Glacial Maximum(LGM, about 21,000 years ago), through aseries of model developments to improve therepresentation of vegetation dynamics,permafrost soil carbon dynamics, andinteractions between large herbivores andvegetation in the ORCHIDEE-MICT landsurface model.For the first part, I improved theparameterization of vegetation dynamics inORCHIDEE-MICT for the northern mid- tohigh-latitude regions, which was evaluatedagainst present-day observation-based datasetsof land cover, gross primary production, andforest biomass. Significant improvements wereshown for the new model version in thedistribution of plant functional types (PFTs),including a more realistic simulation of thenorthern tree limit and of the distribution ofevergreen and deciduous conifers in the borealzone. The revised model was then applied tosimulate vegetation distribution during theLGM, showing a general agreement with thepoint-scale reconstructions based on pollen andplant macrofossil data.Among permafrost (perennially frozen) soils,the thick, ice-rich and organic-rich siltysediments called yedoma deposits hold largequantities of organic carbon, which areremnants of late-Pleistocene carbonaccumulated under glacial climates. In order tosimulate the buildup of the thick frozen carbonin yedoma deposits, I implemented asedimentation parameterization in the soilcarbon module of ORCHIDEE-MICT. Theinclusion of sedimentation allowed the modelto reproduce the vertical distribution of carbonobserved at the yedoma sites, leading toseveral-fold increase in total carbon. Simulatedpermafrost soil carbon stock during the LGMwas ~1550 PgC, among which 390~446 PgCwithin today’s known yedoma region (1.3million km2). This result was still anunderestimation since the potentially largerarea of yedoma during the LGM than todaywas not yet taken into account.For the third part, in light of the growingevidence on the ecological impacts of largeanimals, and the potential role of megaherbivoresas a driving force that maintainedthe steppe ecosystems during the glacialperiods, I incorporated a dynamic grazingmodel in ORCHIDEE-MICT, based onphysiological equations for energy intake andexpenditure, reproduction rate, and mortalityrate for wild large grazers. The model showedreasonable results of today’s grazer biomasscompared to empirical data in protected areas,and was able to produce an extensive biomewith a dominant vegetation of grass and asubstantial distribution of large grazers duringthe LGM. The effects of large grazers onvegetation and carbon cycle were discussed,including reducing tree cover, enhancinggrassland productivity, and increasing theturnover rate of vegetation living biomass.Lastly, I presented a preliminary estimation ofpotential LGM permafrost carbon stock, afteraccounting for the effects of large grazers, aswell as extrapolations for the spatial extent ofyedoma-like thick sediments based on climaticand topographic features that are similar to theknown yedoma region. Since these results werederived under LGM climate and constantsedimentation rate, a more realistic simulationwould need to consider transient climate duringthe last glacial period and sedimentation ratevariations in the next step.
3

Dynamiques des prairies de montagne : intégration de la plasticité phénotypique dans un nouveau modèle à base d'agents / Mountain grasslands dynamics : integrating phenotypic plasticity in a new agent-based model

Viguier, Clément 27 November 2018 (has links)
Les prairies de montagne offrent de nombreux services ecosystémiques qui sont menacés par le changement global. Les traits fonctionnels constituent un outil prometteur pour caractériser les réponses des communautés à des changements de conditions environnementales et leurs répercussions sur les services associés. Cependant, des résulats de plus en plus nombreuses soulignent l’importance de la variabilité intra-spécifique des traits a également été mise en évidence. Pour étudier ces effets, je propose un nouveau modèle à base d’agents, MountGrass, qui combine la modélisation de communautés végétales riches en espèces avec des processus de plasticité phénotypique. Ces deux éléments au coeur du modèle sont associés grâce à des compromis d’allocation basés sur des patrons empiriques établis de stratégies d’utilisation des resources.Avec MountGrass, j’ai exploré l’impact de la plasticité phénotypique sur la croissance individuelle et les propriétés principales des communautés prairiales. À l’échelle individuelle, le modèle paramétré a révélé un fort impact positif de la plasticité phénotypique sur la croissance mais aussi sur la niche fondamentaledes espèces. Des phénomènes de convergence et de réduction de la sensibilité aux variations de conditionsexpliquent ces effets. À l’échelle des communautés, les simulations ont confirmé de forts effets de la plasticité sur la structure des communautés et leur diversité spécifique. Ces effets sont expliqués par l’effet combiné de la réduction du filtre abiotique et de la réduction des différences de compétitivité. Cependant, aucun effet majeur sur la stratégie dominante ou la productivité n’a pu être mis en évidence.Des implémentations alternatives ou des extensions du modèle devraient permettre de tester la robustesse des résultats obtenus et d’analyser d’autres schémas de dynamiques des communautés. En conclusion, ce travail ouvre la voie à une meilleure considération et une meilleure compréhension du rôle des variabilités intra-spécifiques dans les dynamiques des communautés végétales. / Mountain grasslands provide numerous ecosystem services that are likely to be impacted by global change. Plant functional traits hold great promise to succinctly characterise plant community response to changing environmental conditions and its effect on associated services; with growing evidence of the importance of intra-specific trait variability. I propose here a novel agent-based model, MountGrass, that combines the modelling of species rich grassland communities with phenotypic plasticity. These two key components are integrated via allocation trade-offs based on established empirical patterns of strategic differentiation in resource-use.With MountGrass, I explored the impact of phenotypic plasticity on individual plant growth and on main properties of grassland communities. At the individual level, the parametrised model revealed a strong impact of plasticity on growth and species’ fundamental niches, with potentially large impacts on community properties. These effects are explained by the convergence of species’ strategies and the reduction of the sensitivity to variable conditions. At the community level, simulations confirmed the strong effect of plastic allocation on community structure and species richness. These effects are driven by the cumulative effect of a reduction of both abiotic filtering and fitness differences between species. However, no clear effect on the dominant strategy or productivity could be detected.Going further, the robustness of these findings and other patterns of community dynamics should be analysed with alternative or extended implementations of MountGrass. In sum, this work opens a door towards a better integration and understanding of the role of the intra-specific variability in complex plant community dynamics.

Page generated in 0.0858 seconds