• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 10
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 60
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Adriatic Plain : a last glacial maximum human Refugium? Epigravettian subsistence strategies at the site of Vela Spila, Korčula (Croatia)

Spry-Marqués, Victoria Pia January 2012 (has links)
No description available.
2

Resolving chronological and temperature constraints on Antarctic deglacial evolution through improved dating methodology

Subt, Cristina 17 November 2017 (has links)
In order to determine the timing of Antarctic ice sheet retreat and advance during the Late Quaternary, various tools are used to measure the age of marginal marine sediments. Carbonate 14C dating is a well-established approach, but requires foraminiferal microfossils, shells or other carbonate materials that are rare in most Antarctic regions, and may also suffer from vital effects, which can result in variability of up to 500 years in living organisms. Bulk acid insoluble organic (AIO) 14C dates are frequently as an alternative, but this approach works best where high productivity and sedimentation rates reign, and not too well in condensed sequences where high proportions of detritus are present. Compound specific dating methods have also been employed, but these may still yield an average age from a mixture of components and require very large sample sizes. Alternate methods of applying a chronology have also been used, such as magnetic intensity dating, or regional correlation with well-dated cores, but these may not always provide accurate and precise dates. Here I present work, some published with co-authors, of progressive improvements of Ramped PyrOx 14C dating, which utilizes the thermochemical degradation of components within a bulk AIO sediment sample. This dissertation focuses on the study, improvement and application of advanced Ramped PyrOx techniques. These improvements include novel techniques, such as compositing and isotope dilution that I use to date sediments where the proportion of contemporaneously deposited carbon is very small relative to other detrital components, and maximize the accuracy of resulting dates while minimizing costs in precision from utilizing ultra-small fractions of the bulk sample. Ramped PyrOx 14C dating techniques allows us to generate chronologies for cores that would otherwise go undated. Furthermore, these techniques can be used to push the limits of radiocarbon dating not only to regions where accurate core chronologies have been difficult to come by, but also further back in time, into marine sediment horizons deposited at or before the last glacial maximum (LGM), where highly detrital material has precluded radiocarbon dating in the past. Wider use of these techniques can enable more coordinated a priori coring efforts to constrain regional glacial responses to rapid warming.
3

Modelling oxygen isotopes in the UVic Earth System Climate Model under preindustrial and Last Glacial Maximum conditions: impact of glacial-interglacial sea ice variability on seawater d18O

Brennan, Catherine Elizabeth 10 September 2012 (has links)
Implementing oxygen isotopes (H218O, H216O) in coupled climate models provides both an important test of the individual model's hydrological cycle, and a powerful tool to mechanistically explore past climate changes while producing results directly comparable to isotope proxy records. The addition of oxygen isotopes in the University of Victoria Earth System Climate Model (UVic ESCM) is described. Equilibrium simulations are performed for preindustrial and Last Glacial Maximum (LGM) conditions. The oxygen isotope content in the model's preindustrial climate is compared against observations for precipitation and seawater. The distribution of oxygen isotopes during the LGM is compared against available paleo-reconstructions. Records of temporal variability in the oxygen isotopic composition of biogenic carbonates from ocean sediment cores inform our understanding of past continental ice volume and ocean temperatures. Interpretation of biogenic carbonate d18O variability typically neglects changes due to factors other than ice volume and temperature, equivalent to assuming constant local seawater isotopic composition. This investigation focuses on whether sea ice, which fractionates seawater during its formation, could shift the isotopic value of seawater during distinct climates. Glacial and interglacial states are simulated with the isotope-enabled UVic ESCM, and a global analysis is performed. Results indicate that interglacial-glacial sea ice variability produces as much as a 0.13 permil shift in local seawater, which corresponds to a potential error in local paleotemperature reconstruction of approximately 0.5 C. Isotopic shifts due to sea ice variability are concentrated in the Northern Hemisphere, specifically in the Labrador Sea and northeastern North Atlantic. / Graduate
4

¹⁰Be cosmogenic exposure ages of late pleistocene moraines near the Maryburn Gap of the Pukani Basin, New Zealand /

Doughty, Alice Marie, January 2008 (has links)
Thesis (M.S.) in Earth Sciences--University of Maine, 2008. / Includes vita. Includes bibliographical references (leaves 79-88).
5

The effect of lower sea level on geostrophic transport through the Florida Straits during the last glacial maximum

Ionita, Dana. January 2009 (has links)
Thesis (M. S.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2009. / Committee Chair: Jean Lynch-Stieglitz; Committee Co-Chair: Emanuele Di Lorenzo; Committee Member: Annalisa Bracco; Committee Member: Robert Black
6

The effect of lower sea level on geostrophic transport through the Florida Straits during the last glacial maximum

Ionita, Dana 14 January 2009 (has links)
We investigate the effect of a 120 meter sea level drop on transport through the Caribbean Sea and the Florida Straits during the Last Glacial Maximum (LGM) relative to the present, using the Regional Ocean Modeling System (ROMS). A geostrophic transport estimate for the Florida Straits suggests the LGM Florida Current was weaker than today by one third, inferring a likely decrease in the North Atlantic overturning circulation by 12-15 Sv. A possible impact of a shallower LGM Florida Straits sill depth on the Florida Current has been suggested. Our model results show that the volume transport through the Florida Straits is slightly reduced in a lower sea level model simulation when compared to a control sea level simulation (34.8 ± 2.0 Sv vs. 39.8 ± 2.3 Sv). The difference in transport is of the order of 5 Sv, representing a maximum limit to the LGM flow reduction due to sea level change. Therefore the change in sill depth between the LGM and the present is unlikely to have been a cause of the entire observed flow reduction.
7

Paleo-proxies for the thermocline and lysocline over the last glacial cycle in the Western Tropical Pacific

Leech, Peter Joseph 20 September 2013 (has links)
The shape of the thermocline and the depth of the lysoline in the western tropical Pacific are both influenced by the overlying atmosphere, and both the shape of thermocline and the depth of the lysocline can be reconstructed from foraminifera-based paleo-proxies. Paleoclimate proxy evidence suggests a southward shift of the Intertropical Convergence Zone (ITCZ) during times of Northern Hemisphere cooling, including the Last Glacial Maximum (LGM), 19-23 ka before present. However, evidence for movement over the Pacific has mainly been limited to precipitation reconstructions near the continents, and the position of the Pacific marine ITCZ is less well constrained. In this study, I address this problem by taking advantage of the fact that the upper ocean density structure reflects the overlying wind field. I reconstruct changes in the upper ocean density structure during the LGM using oxygen isotope measurements on the planktonic foraminifera G. ruber and G. tumida in a transect of sediment cores from the Western Tropical Pacific. The data suggest a ridge in the thermocline just north of the present-day ITCZ persists for at least part of the LGM, and a structure in the Southern Hemisphere that differs from today. The reconstructed structure is consistent with that produced in a General Circulation Model with both a Northern and Southern Hemisphere ITCZ. I also attempt to reconstruct the upper ocean density structure for Marine Isotope Stages 5e and 6, the interglacial and glacial periods, respectively, previous to the LGM. The data show a Northern Hemisphere thermocline ridge for both of these periods. There is insufficient data to draw any conclusions about the Southern Hemisphere thermocline. Using the same set of sediment cores, I also attempt to reconstruct lysocline depth over the last 23,000 years using benthic foraminiferal carbon isotope ratios, planktonic foraminiferal masses, and sediment coarse fraction percentage. Paleoclimate proxy evidence and modeling studies suggest that the deglaciation following the LGM is associated with a deepening of the lysocline and an increase in sedimentary calcite preservation. Although my data lack the resolution to constrain the depth of the lysocline, they do show an increase in calcite preservation during the last deglaciation, consistent with lysocline deepening as carbon moves from the deep ocean to the atmosphere.
8

Asian monsoon over mainland Southeast Asia in the past 25 000 years

Chabangborn, Akkaneewut January 2014 (has links)
The objective of this research is to interpret high-resolution palaeo-proxy data sets to understand the Asian summer monsoon variability in the past. This was done by synthesizing published palaeo-records from the Asian monsoon region, model simulation comparisons, and analysing new lake sedimentary records from northeast Thailand. Palaeo-records and climate modeling indicate a strengthened summer monsoon over Mainland Southeast Asia during the Last Glacial Maximum (LGM), compared to dry conditions in other parts of the Asian monsoon region. This can be explained by the LGM sea level low stand, which exposed Sundaland and created a large land-sea thermal contrast. Sea level rise ~19 600 years before present (BP), reorganized the atmospheric circulation in the Pacific Ocean and weakened the summer monsoon between 20 000 and 19 000 years BP. Both the Mainland Southeast Asia and the East Asian monsoon hydroclimatic records point to an earlier Holocene onset of strengthened summer monsoon, compared to the Indian Ocean monsoon. The asynchronous evolution of the summer monsoon and a time lag of 1500 years between the East Asian and the Indian Ocean monsoon can be explained by the palaeogeography of Mainland Southeast Asia, which acted as a land bridge for the movement of the Intertropical Convergence Zone. The palaeo-proxy records from Lake Kumphawapi compare well to the other data sets and suggest a strengthened summer monsoon between 10 000 and 7000 years BP and a weakening of the summer monsoon thereafter. The data from Lake Pa Kho provides a picture of summer monsoon variability over 2000 years. A strengthened summer monsoon prevailed between BC 170-AD 370, AD 800-960 and since AD 1450, and was weaker about AD 370-800 and AD 1300-1450. The movement of the mean position of the Intertropical Convergence Zone explains shifts in summer monsoon intensity, but weakening of the summer monsoon between 960 and 1450 AD could be affected by changes in the Walker circulation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript..</p>
9

Southern African Climate Dynamics and Archaeology during the Last Glacial Maximum

Phillips, Anna 09 December 2013 (has links)
There is little consensus on what forced the climate of southern Africa to change during the Last Glacial Maximum (LGM). Because of southern Africa's latitudinal position, changes in seasonal precipitation can help resolve the influence of internal climate factors such as groundwater and external climate forcers such as large scale atmospheric circulation patterns. This paper presents a simple model of groundwater discharge based on permeability and topography in comparison with general circulation model precipitation results and paleoenvironmental proxy records. Results show that during the LGM the Intertropical Convergence Zone (ITCZ) likely weakened and moved slightly further south while the westerlies likely expanded slightly northward, with no significant change in strength. The climate and groundwater results were compared to the distribution of LGM and pre-LGM archaeological sites. Results show that the Later Stone Age peoples of southern Africa were likely inhabiting a relatively wet environment rather than an arid one.
10

Southern African Climate Dynamics and Archaeology during the Last Glacial Maximum

Phillips, Anna 09 December 2013 (has links)
There is little consensus on what forced the climate of southern Africa to change during the Last Glacial Maximum (LGM). Because of southern Africa's latitudinal position, changes in seasonal precipitation can help resolve the influence of internal climate factors such as groundwater and external climate forcers such as large scale atmospheric circulation patterns. This paper presents a simple model of groundwater discharge based on permeability and topography in comparison with general circulation model precipitation results and paleoenvironmental proxy records. Results show that during the LGM the Intertropical Convergence Zone (ITCZ) likely weakened and moved slightly further south while the westerlies likely expanded slightly northward, with no significant change in strength. The climate and groundwater results were compared to the distribution of LGM and pre-LGM archaeological sites. Results show that the Later Stone Age peoples of southern Africa were likely inhabiting a relatively wet environment rather than an arid one.

Page generated in 0.0623 seconds