• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intelligent Infrastructures for Charging Reservation and Trip Planning of Connected Autonomous Electric Vehicles

Shaikh, Palwasha Waheed 24 September 2021 (has links)
For an environmentally sustainable future, electric vehicle (EV) adoption rates have been growing exponentially around the world. There is a pressing need for constructing smart charging infrastructures that can successfully integrate the large influx of connected and autonomous EVs (CAEVs) into the smart grids. To fulfill the aspiration of massive deployment of autonomous mobility on demand (AMoD) services, the proposed fast and secure framework will need to address the long charging times and long waiting times of static charging. It will also need to consider dynamic wireless charging as a viable solution for the CAEVs on the move. In this thesis, a novel three-layer charging system design of static and dynamic wireless charging that can operate with the existing wired charging infrastructure and standards for Intelligent Transportation System (ITS) is presented. This internet of things (IoT) application is accompanied by a proposed handshake protocol with light-weight request message frames. It employs vehicle to infrastructure (V2I) and vehicle to grid (V2G) communications for fulfilling charging requests of CAEVs with the shortest possible route to the destination. The charging requests of the CAEV users are fulfilled by dynamically distributing the request over the three different types of charging equipment. Further, the requests are serviced and billed privately and securely using two different proposed payment schemes with the encrypted virtual currency. The hardware independent system can detect misalignment of the CAEVs on the wireless charging pads and the speed issue errors in dynamic wireless charging systems as well as avoid free-riders. Additionally, the proposed dynamic wireless charging network (DWCN) design specification tool is analyzed. The suggestions made by the tool for building a DWCN can enable implementers to achieve the desired charging delivery performance at the lowest cost possible. Finally, the presented system is simulated, and this verified and validated simulator is revealed to make reservations and plan trips with minimum waiting times, travel costs, and battery consumption per vehicle trip. The system results proved 90.25% charge delivery efficiency. This system is then compared with alternative system designs to help showcase its ability to aid implementers and analysts in making design choices with the simulation.
2

Routing and Designing Networks for Two Transportation Problems

Su, Liu 03 April 2019 (has links)
Routing and designing are essential for transportation networks. With effective routing and designing policies, transportation networks can work safely and efficiently. There are two transportation problems: hazardous materials (hazmat) transportation and warehouse logistics. This dissertation addresses the routing of networks for both problems. For hazmat transportation, the routing can be regulated via network design. Due to catastrophic consequences of potential accidents in hazmat transportation, a risk-averse approach for routing is necessary. In this dissertation, we consider spectral risk measures, for risk-averse hazmat routing. In addition, we introduce a network design problem to select a set of closed road segments for hazmat traffic with conditional value-at-risk (CVaR) to regulate hazmat routing. In warehouses, the routing of electric forklifts with sufficient battery levels is for material handling. The optimization model of dynamic wireless charging lane location is proposed under the workflow congestion in parallel-aisle warehouses. Considering the uncertainty of demands, the wireless charging lane location problem is formulated as a two-stage stochastic programming model. We confirm the efficiency of the proposed algorithms in solving these problems and the key advantages of use the proposed routing and designing policies via case studies.
3

Transferência indutiva de potência elétrica em sistema de abastecimento de veículo elétrico puro /

Jorgetto, Marcus Felipe Calori. January 2018 (has links)
Orientador: Carlos Alberto Canesin / Resumo: Esta tese apresenta uma forma inédita para o carregamento de veículos elétricos (VE) puros em movimento, sem fios e sem acoplamentos mecânicos (dynamic Wireless Power Transfer - dynamic WPT), considerando a transferência indutiva de energia (Induced Power Transfer - IPT), a partir de uma proposta sem sensores (WPT sensorless), combinando um arranjo de elementos transmissores, especialmente desenvolvidos para um estudo de caso. A estrutura de potência emprega um conversor ressonante LLCC série-paralelo operando em modo contínuo com modulação com frequência fixa e deslocamento de fase, com controle realimentado indiretamente para a corrente de saída. Além da metodologia utilizada para a proposta deste trabalho, o texto apresenta um projeto de carregamento estático compatível com o sistema de carregamento dinâmico e, também, uma comparação entre possíveis estruturas ressonantes de terceira e quarta ordens compatíveis com os elementos IPT, apresentando-se as vantagens e as desvantagens para cada estrutura. O carregador dinâmico foi aplicado experimentalmente para um veículo elétrico (VE) puro, em pequena escala de potência (mini baja elétrico), constituído por oito elementos IPTs associados em série como emissor, resultando em um acoplamento mútuo constante para o receptor IPT no VE por uma extensão de 1150 mm, a uma distância entre emissor e receptor, de 35 mm. Os resultados experimentais obtidos apresentam elevado rendimento médio (86,4 %) para o processo de transferência de po... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This thesis proposes a novel design to pure electrical vehicle (EV) dynamic charging electrical contactless and without mechanical coupling (dynamic Wireless Power Transfer - dynamic WPT), considering the induced power transfer, by a propose WPT sensorless, combining a transmitter element arrangement particularly designed for this study case. The power structure uses a LLCC series-parellel resonant converter, in continuous conduction mode with phase shift modulation and fixed frequency, applying a feedback indirect control for the output current. In addition to methodology in the present proposal, this paper shows a static wireless power transfer project works with the dynamic charging, and also a potential structure comparation of third and fourth order resonant compatible with the IPT elements, showing the advantages and disadvantages for each resonant tank. The dynamic charging is presently being piloted in a pure electrical vehicle, in small scale power (mini electric baja), it is made up of eight IPT elements in series association as emitter, resulting in a constant mutual coupling with IPT receiver in the EV, by a range of 1150 mm, with a distance between emitter and receiver of 35 mm. The experimental results obtained show a high average efficiency (86.4%) for the wireless power transfer process over the entire length of the loader, for the nominal input power condition of 1300 W. / Doutor

Page generated in 0.1074 seconds