• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4428
  • 1850
  • 911
  • 505
  • 505
  • 161
  • 153
  • 127
  • 95
  • 93
  • 93
  • 48
  • 38
  • 33
  • 33
  • Tagged with
  • 10672
  • 1277
  • 1209
  • 1026
  • 1011
  • 934
  • 824
  • 823
  • 792
  • 713
  • 705
  • 609
  • 570
  • 556
  • 526
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Effects of oversized particles on the dynamic properties of sand specimens evaluated by resonant column testing

Shin, Boonam 18 November 2014 (has links)
This study was motivated by the fact that many times intact specimens with a number of oversized particles are dynamically tested in the laboratory and the impact of the particles on the dynamic properties is unknown. The effects of oversized particles represented by gravel particles on the shear modulus (G) and material damping ratio (D) of a uniform sand were evaluated in the linear (γ ≤ 0.001%) and nonlinear (γ > 0.001%) ranges of shear strain with combined resonant column and torsional shear (RCTS) equipment. The sand used in this investigation is a uniform sand as a reference, well-characterized material on the dynamic properties. Sand-gravel specimens were constructed using the undercompaction method. A variety of rounded gravel particles was used in building the specimens. Dynamic tests on the sand-gravel specimens were performed, and the tests results are presented. Among the findings of this investigation are that, compared to uniform sand: (1) oversized gravel particles symmetrically located along the longitudinal axis in uniform sand generally decreased slightly the small-strain shear modulus (Gmax), (2) oversized gravel particles asymmetrically located away from the longitudinal axis of rotation resulted in slight increases in Gmax and the small-strain material damping ratio (Dmin), (3) the G – log γ relationships of sand-gravel specimens with asymmetrically located gravel particles are generally above those with gravel particles symmetrically located along the longitudinal axis, and (4) the G/Gmax – log γ relationships of all specimens were reasonably close for the nonlinear ranges covered in these tests (γ < 0.05 % and G/Gmax > 0.6). As long as the oversized particles were near the axis of rotation, the particles had little effect on the dynamic properties (Gmax, Dmin and G – log γ relationships) regardless of sizes and numbers of particles. However, once the oversized particles were located away from the axis of rotation and closer to the perimeter of the specimen, the oversized particles influenced the dynamic properties. Finally, the additions of oversized particles located both symmetrically and asymmetrically in the uniform sand specimens have little impact on the nonlinear dynamic properties (G/Gmax – log γ and D – log γ relationships) which compared well with uniform sand. / text
302

Hydrogen Embrittlement of Ferrous Materials

Stroe, Mioara Elvira M E 31 March 2006 (has links)
ABSTRACT This work deals with the damage due to the simultaneous presence of hydrogen in atomic form and stress – straining. The aim of this work is twofold: to better understand the hydrogen embrittlement mechanisms and to translate the acquired knowledge into a more appropriate qualification test. The phenomena of hydrogen entry and transport inside the metals, together with the different types of damages due to the presence of hydrogen, are presented. The analysis of the most important models proposed up to now for hydrogen embrittlement (HE) indicated that the slow dynamic plastic straining is a key factor for the embritteling process. There is a synergistic effect of hydrogen – dislocations interactions: on one hand hydrogen facilitates the dislocations movement (according to the HELP mechanism) and on the other hand dislocations transport hydrogen during their movement when their velocity is lower than a critical value. This work is focused on supermartensitic stainless steels, base and welded materials. The interest on these materials is due to their broad use in offshore oil production. First, the material’s characterisation with regards to hydrogen content and localisation was performed. This was conducted in charging conditions that are representative of industrial applications. Because of previous industrial experience it was necessary to find a more appropriate qualification test method to asses the risk of HE. In this work we proposed the stepwise repeated slow strain rate test (SW R – SSRT) as a qualification test method for supermartensitic stainless steels. This test method combines hydrogen charging, test duration, plastic, dynamic and slow strains. Thus, this test method is coherent with both the model HELP proposed for hydrogen embrittlement and the observations of industrial failures. The stepwise repeated slow strain rate test (SW RSSRT) is interesting not only as a qualification test of martensitic stainless steels, but also as a qualification test of conditions for using these materials (type of straining, range of strain and stress, strain rate, hydrogen charging conditions, etc.). RESUME Ce travail se rapporte à l’endommagement provoqué par la présence simultanée de l’hydrogène sous forme atomique et une contrainte (appliquée où résiduelle). Ce travail a comme but une meilleure compréhension du mécanisme de la fragilisation par l’hydrogène (FPH) et la recherche d’un essai de qualification qui soit cohérent avec ce mécanisme. Les phénomènes liés à l’entrée et au transport de l’hydrogène au sein des métaux, ensemble avec les différents types d’endommagements dus à la présence de l’hydrogène, sont présentés. L’analyse des modèles proposés jusqu’au présent pour la fragilisation par l’hydrogène (FPH) suggère que la déformation lente plastique dynamique est le facteur clé pour le processus de la fragilisation. Il y a un effet synergétique des interactions entre l’hydrogène et les dislocations: d’un coté l’hydrogène facilite le mouvement des dislocations (d’après le modèle HELP) et d’un autre coté les dislocations transportent l’hydrogène pendant leur mouvement, pourvu que leur vitesse soit en dessous d’une valeur critique. Le travail a été conduit sur des aciers supermartensitiques, matériau de base et soudé. L’intérêt pour ces matériaux réside de leur large utilisation dans la production du pétrole en offshore. D’abord, le matériau a été caractérisé du point de vu de la teneur et de la localisation de l’hydrogène. Les essais ont été conduits dans des conditions représentatives pour les cas industriels. L’expérience industrielle d’auparavant indique qu’il est nécessaire de trouver un test de qualification plus approprié pour estimer la susceptibilité à la fragilisation par l’hydrogène. Dans ce travail on propose un essai de traction lente incrémentée (SW R – SSRT) comme méthode de qualification pour les aciers supermartensitiques. L’essai combine le chargement en hydrogène, la durée d’essai, la déformation lente, plastique et dynamique. Donc, cette méthode d’essai est cohérente avec le modèle HELP proposé pour FPH et les observations des accidents industriels. Cet essai est intéressant pas seulement comme essai de qualification pour les aciers supermartensitiques, mais aussi comme essai de qualification pour les conditions d’utilisation des ces matériaux (type de déformation, niveau de déformation et contrainte, vitesse de déformation, conditions de chargement en hydrogène, etc.).
303

Simulation for Improvement of Dynamic Path Planning in Autonomous Search and Rescue Robots

Hasler, Michael Douglas January 2009 (has links)
To hasten the process of saving lives after disasters in urban areas, autonomous robots are being looked to for providing mapping, hazard identification and casualty location. These robots need to maximise time in the field without having to recharge and without reducing productivity. This project aims to improve autonomous robot navigation through allowing comparison of algorithms with various weightings, in conjunction with the ability to vary physical parameters of the robot and other factors such as error thresholds/limits. The lack of a priori terrain data in disaster sites, means that robots have to dynamically create a representation of the terrain from received sensor range-data in order to path plan. To reduce the resources used, the affect of input data on the terrain model is analysed such that some points may be culled. The issues of identifying hazards within these models are considered with respect to the effect on safe navigation. A modular open-source platform has been created which allows the automated running of experimental trials in conjunction with the implementation and use of other input types, node networks, or algorithms. Varying the terrains, obstacles, initial positions and goals, which a virtual robot is tasked with navigating means that the design, and hence performance, are not tailored to individual situations. Additionally, this demonstrates the variability of scenarios possible. This combination of features allows one to identify the effects of different design decisions, while the use of a game-like graphical interface allows users to readily view and comprehend the scenarios the robot encounters and the paths produced to traverse these environments. The initially planned focus of experimentation lay in testing different algorithms and various weightings, however this was expanded to include different implementations and factors of the input collection, terrain modelling and robot movement. Across a variety of terrain scenarios, the resultant paths and status upon trial completion were analysed and displayed to allow observations to be made. It was found that the path planning algorithms are of less import than initially believed, with other facets of the robotic system having equally significant roles in producing quality paths through a hazardous environment. For fixed view robots, like the choice used in this simulator, it was found that there were issues of incompatibility with A* based algorithms, as the algorithm’s expected knowledge of the areas in all directions regardless of present orientation, and hence they did not perform as they are intended. It is suggested that the behaviour of such algorithms be modified if they are to be used with fixed view systems, in order to gather sufficient data from the surroundings to operate correctly and find paths in difficult terrains. A simulation tool such as this, enables the process of design and testing to be completed with greater ease, and if one can restrain the number of parameters varied, then also with more haste. These benefits will make this simulation tool a valuable addition to the field of USAR research.
304

Assessing the road damaging potential of heavy vehicles

Potter, Theodore Edmund Cooper January 1995 (has links)
No description available.
305

Adaptive control of energy efficient hydraulic systems

Beard, Gregory Stuart January 1999 (has links)
No description available.
306

Dynamic equivalencing of distribution network with embedded generation

Feng, Xiaodan Selina January 2012 (has links)
Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, notably through smaller generators embedded in the distribution network. Historically insignificant volumes of Embedded Generation (EG) mean that traditionally it has been treated by the transmission system operator as negative load, with its impact on the dynamic behaviour of power systems neglected. However, with the penetration level increasing, EG would start to influence the dynamics and stability of the transmission network. Hence the dynamic behaviour of distribution network cannot be neglected any more. In most cases, a detailed distribution network model is not always available or necessary for the study of transmission network dynamics and stability. Thus a dynamic equivalent model of the distribution network that keeps its essential dynamic behavior, is required. Most existing dynamic equivalencing methods are based on the assumption that the detailed information of the complete power system is known. Dynamic equivalencing methods based on coherency of the machines have been applied to transmission networks but cannot be applied to distribution networks due to their radial structure. Hence an alternative methodology has been developed in this project to derive the dynamic equivalent model of the distribution network using system identification, without the detailed information of the distribution network necessarily known. Case studies have been accomplished in PSS/E on a model of the Scottish transmission network with the distribution network in Dumfries and Galloway. Embedded generation with a certain penetration level in either conventional generation or DFIG wind generation has been added to the model of the distribution network. The dynamic equivalent models of the distribution network are compared with the original distribution network model using a series of indicators. A constant power model has also been involved in the comparison to illustrate the advantage of using the dynamic equivalent to represent the distribution network. The results suggest that a proper dynamic equivalent model derived using this methodology may have better agreement to the original power system dynamic response than constant power equivalent. A discussion on factors that influence the performance of the dynamic equivalent model, is given to indicate the proper way to use this methodology. The major advantage of the dynamic equivalencing methodology developed in this project is that it can potentially use the time series obtained from measurements to derive the dynamic equivalent models without knowing detailed information on the distribution network. The derived dynamic equivalent, in a simple spate-space form, can be implemented in commercial simulation tools, such as PSS/E.
307

A framework for discrete-time dynamic programming with multiple objectives.

Rakshit, Ananda. January 1988 (has links)
The investigation reported in this dissertation attempts to determine the feasibility of using a distance-based approach like compromise programming for discrete-time dynamic programming problems with multiple objectives. In compromise programming, a function measuring the distance from a generally infeasible ideal solution to the feasible set of the problem is the single objective acting as a surrogate for the set of multiple objectives. Since, in general, there is no single best solution to a multiple objective problem, a framework to generate a family of compromise solutions interactively on a computer is proposed. Various quantities relevant to dynamic compromise programming are defined in precise terms. Dynamic compromise programming problems are computationally difficult to solve because in order to make the distance function decomposable over stages, dimensionality of the state-space must be increased by the number of objectives. To generate compromise solutions, quasi-Newton differential dynamic programming (QDDP), a recently developed variable-metric method for discrete-time optimal control, was employed. QDDP is attractive because no second order or Hessian information is required as input. Instead, Hessian matrices are approximated by first order or gradient information. Since very little is known about its numerical properties, computational experiments were conducted on QDDP. A new strategy for updating Hessian matrix approximations was computationally tested. A constrained QDDP algorithm is proposed, computationally tested, and applied to solve a multiobjective dynamic programming problem with inequality constraints at each stage. The algorithm has the potential for application to the more general discrete-time optimal control problem with stage constraints. The framework for generating compromise solutions interactively was implemented for prototype problems. Because decision maker interaction is crucial in a multiple objective situation, special attention was paid towards developing a man-machine interface using on-screen windows. All implementation and computational testing were done on a UNIX based personal computer.
308

System And Algorithm Design For Varve Image Analysis System

He, Zhijun January 2007 (has links)
This dissertation describes the design and implementation of a computer vision based varve image analysis system. The primary issues covered are software engineering design, varve image calibrations, varve image enhancement, varve Dynamic Spatial Warping (DSW) profile generation, varve core image registration, varve identification, boundary identification and varve thickness measurement. A varve DSW matching algorithm is described to generate DSW profile and register two core images. Wavelet Multiple Resolution Analysis (MRA) is also used to do the core image registrations. By allowing an analyst to concentrate on other research work while the VARVES software analyzes a sample, much of the tedious varve analysis work is reduced, and potentially increasing the productivity. Additionally, by using new computer vision techniques, VARVES system is able to do some varve analysis which was impossible handled manually.
309

An individual based population study of an insect herbivore (Urophora jaceana) and its host plant (Centaurea nigra)

Paul, Roger Philip January 1997 (has links)
No description available.
310

Prediction of the effects of aerofoil surface irregularities at high subsonic speeds using the Viscous Garabedian and Korn (VKG) method

El-Ibrahim, Salah Jamil Saleh January 2000 (has links)
No description available.

Page generated in 0.0443 seconds