• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulações numéricas da percolação dinâmica / Simulations of Dynamical Percolation

Wada, Alexander Hideki Oniwa 10 February 2015 (has links)
Estudamos o modelo epidemiológico denominado susceptível-exposto-infectado (SEI) na rede quadrada por meio de simulações numéricas. Nesse modelo, cada sítio da rede pode estar susceptível, exposto ou infectado. Um sítio susceptível nas vizinhanças de um infectado se torna infectado com uma certa probabilidade e exposto com probabilidade complementar. Sítios infectados ou expostos permanecem para sempre nessa condição. Mostramos que os aglomerados gerados a partir de um único infectado numa rede repleta de suscetíveis são os mesmos aglomerados presentes na percolação isotrópica. Calculamos os expoentes críticos dinâmicos com bastante precisão permitindo colocar o modelo SEI na classe de universalidade da percolação dinâmica. / We have studied the epidemiologic model called susceptible-exposed-infected (SEI) on a square lattice by numerical simulations. In this model, each site of the lattice may be susceptible, exposed or infected. A susceptible site in the neighborhood of an infected site becomes infected with a given probability, or exposed with a complementary probability. Infected and exposed sites remain forever in these states. We have shown that clusters generated by a single infected site in a lattice full of susceptible are the same clusters as in the isotropic percolation. The critical dynamic exponents were calculated with large precision allowing to put the SEI model into the dynamical percolation universality class.
2

Simulações numéricas da percolação dinâmica / Simulations of Dynamical Percolation

Alexander Hideki Oniwa Wada 10 February 2015 (has links)
Estudamos o modelo epidemiológico denominado susceptível-exposto-infectado (SEI) na rede quadrada por meio de simulações numéricas. Nesse modelo, cada sítio da rede pode estar susceptível, exposto ou infectado. Um sítio susceptível nas vizinhanças de um infectado se torna infectado com uma certa probabilidade e exposto com probabilidade complementar. Sítios infectados ou expostos permanecem para sempre nessa condição. Mostramos que os aglomerados gerados a partir de um único infectado numa rede repleta de suscetíveis são os mesmos aglomerados presentes na percolação isotrópica. Calculamos os expoentes críticos dinâmicos com bastante precisão permitindo colocar o modelo SEI na classe de universalidade da percolação dinâmica. / We have studied the epidemiologic model called susceptible-exposed-infected (SEI) on a square lattice by numerical simulations. In this model, each site of the lattice may be susceptible, exposed or infected. A susceptible site in the neighborhood of an infected site becomes infected with a given probability, or exposed with a complementary probability. Infected and exposed sites remain forever in these states. We have shown that clusters generated by a single infected site in a lattice full of susceptible are the same clusters as in the isotropic percolation. The critical dynamic exponents were calculated with large precision allowing to put the SEI model into the dynamical percolation universality class.
3

Transições de fase em modelos populacionais com desordem espacial e temporal / Phase transitions in biological population models with spatial and temporal disorder

Wada, Alexander Hideki Oniwa 27 March 2019 (has links)
Nesta tese estudamos os efeitos da desordem espacial e temporal na transição de fase entre a sobrevivência e extinção de populações biológicas. Na primeira parte estudamos um modelo epidemiológico com quatro estados. Apesar deste modelo não conter desordem, concluímos que seu comportamento crítico é o mesmo do processo de contato com desordem (espacial) quenched. Na segunda parte estudamos o movimento Browniano fracionário refletido, onde vimos que a combinação dos efeitos do ruído com correlações de longo alcance e a parede refletora cria uma singularidade em lei de potência na densidade de probabilidade da posição do caminhante. Por fim, estudamos a equação logística com desordem temporal através do mapeamento no movimento Browniano fracionário refletido. Neste último estudo vimos como as correlações de longo alcance mudam o comportamento crítico deste sistema. / We have studied the effects of spatial and temporal disorder at the phase transition between survival and extinction of biological populations. In the first part we studied a four states biological population model. Despite having no disorder, we have seen that its critical behavior is the same of the contact process with (spatial) quenched disorder. In the second part, we studied the reflected fractional Brownian motion, where the interplay between the correlated noise and the reflecting wall results in a power-law singularity in the probability density of the position of the walker. Finally, we deduced the critical properties of the logistic equation with temporal disorder by mapping it onto the reflected fractional Brownian motion. This mapping allow us to understand how long-range correlations change the critical behavior of this system.
4

Percolation dans le plan : dynamiques, pavages aléatoires et lignes nodales / Percolation in the plane : dynamics, random tilings and nodal lines

Vanneuville, Hugo 28 November 2018 (has links)
Dans cette thèse, nous étudions trois modèles de percolation planaire : la percolation de Bernoulli, la percolation de Voronoi, et la percolation de lignes nodales. La percolation de Bernoulli est souvent considérée comme le modèle le plus simple à définir admettant une transition de phase. La percolation de Voronoi est quant à elle un modèle de percolation de Bernoulli en environnement aléatoire. La percolation de lignes nodales est un modèle de percolation de lignes de niveaux de champs gaussiens lisses. Deux fils conducteurs principaux ont guidé nos travaux. Le premier est la recherche de similarités entre ces modèles, en ayant à l'esprit que l'on s'attend à ce qu'ils admettent tous la même limite d'échelle. Nous montrons par exemple que le niveau critique de la percolation de lignes nodales est égal au niveau auto-dual (à savoir le niveau zéro) lorsque le champ considéré est le champ de Bargmann-Fock, qui est un champ gaussien analytique naturel. Le deuxième fil conducteur est l'étude de dynamiques sur ces modèles. Nous montrons en particulier que, si on considère un modèle de percolation de Voronoi critique et si on laisse les points se déplacer selon des processus de Lévy stables à très longue portée, alors il existe des temps exceptionnels avec une composante non bornée / We study three models of percolation in the plane: Bernoulli percolation, Voronoi percolation, and nodal lines percolation. Bernoulli percolation is often considered as the simplest model which admits a phase transition. Voronoi percolation is a Bernoulli percolation model in random environment. Nodal lines percolation is a level lines percolation model for smooth planar Gaussian fields. We have followed two main threads. The first one is the resarch of similarities between these models, having in mind that we expect that they admit the same scaling limit. We show for instance that the critical level for nodal lines percolation is the self-dual level (namely the zero level) if the Gaussian field is the Bargmann-Fock field, which is natural analytical field. The second main thread is the study of dynamics on these percolation models. We show in particular that if we sample a critical Voronoi percolation model and if we let each point move according to a long range stable Lévy process, then there exist exceptional times with an unbounded cluster

Page generated in 0.1151 seconds