• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • Tagged with
  • 24
  • 24
  • 11
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of component stiffness and deformation on vehicle lateral drift during braking

Mirza, N., Hussain, Khalid, Day, Andrew J., Klaps, J. January 2009 (has links)
This article presents a simulation study into effects of compliant (flexible) components (such as the engine subframe and the lower control arm) and their deflections on the characteristics of a vehicle experiencing steering drift during straight-line braking. The vehicle front and rear suspension are modelled using multi-body dynamic analysis software. The front suspension model represents theMacPherson strut design of the vehicle and includes a rack and pinion steering system, brake system, engine subframe, and a powertrain unit. The model has been analysed under two steering control methods: fixed and free control. Suspension characteristics and the effect of deflections arising from the subframe and the lower control arm on these suspension characteristics have been analysed. The simulations confirmed that variation of component stiffness and interactions within components give rise to side-to-side deflections that could affect lateral drift during braking. It is concluded that side-to-side variation of suspension characteristics can have a detrimental effect on lateral drift during braking and that compliant components whose stiffness varies from side to side can cause different side-to-side deflections that can induce and influence variation in suspension characteristics such as toe steer angle that can lead the vehicle during braking.
12

Conceptual Design, Testing And Manufacturing Of An Industrial Type Electro-hydraulic Vacuum Sweeper

Sahin, Emre 01 September 2011 (has links) (PDF)
CONCEPTUAL DESIGN, TESTING AND MANUFACTURING OF AN INDUSTRIAL TYPE ELECTRO-HYDRAULIC VACUUM SWEEPER SAHIN, Emre M.Sc., Department of Mechanical Engineering Supervisor : Prof. Dr. Kahraman ALBAYRAK Co-Supervisor: Prof. Dr. Bilgin KAFTANOGLU September 2011, 156 pages In this thesis, conceptual design, testing, development and manufacturing processes of the cleaning (elevator and fan system) and electro-hydraulic systems of an industrial type vacuum sweeper are presented. Thesis is financially supported by Ministry of Science, Industry and Technology (Turkey) and M&uuml / san A.S. (Makina &Uuml / retim Sanayi ve Ticaret A.S.) under the SAN-TEZ projects with numbers 00028.STZ.2007-1 and 00623.STZ.2010-1. The main purpose is to make critical design changes on existing fan system, designing a new elevator system and eventually obtaining efficient and powerful cleaning system. For design, Catia and SolidWorks softwares are used. Within the SAN-TEZ project, all CFD solutions were provided by Punto Engineering. Unlike many industrial type vacuum sweepers, new design will be electrically and electro-hydraulic controlled. All cleaning system of new &lsquo / M&Uuml / SAN Vacuum Sweeper&rsquo / will be activated by using hydraulic motors (traction system including hydraulic system is driven by the brushless DC electric motor as well) and the power of all these systems is supplied by batteries which are placed in the middle of the vehicle. Elevator and fan system can be considered as a group for a street sweeper for cleaning operations. Fan and elevator systems both gain an important place especially in cleaning operations due to lifting heavy and small particles from the ground. Fan system is used for sucking the small materials and dust by vacuum and elevator system is used to elevate heavier materials such stones, bottles, cans. Therefore, it is essential to design an efficient and powerful fan and elevator system for a street sweeper. The thesis work includes the design, development, supervision of manufacturing, simulation and testing of the cleaning (elevator and fan systems) and electro-hydraulic system of the street cleaners.
13

Ferramentas para análise dinâmica e estrutural de um reboque de linha leve / Dynamic and structural analysis of a light trailer

Grison, Vagner January 2005 (has links)
Neste trabalho é desenvolvida uma metodologia de projeto para identificar as regiões críticas da estrutura de um reboque de linha leve sendo tracionado em pavimentos do tipo rodovia de baixa qualidade e estrada secundária de muito baixa qualidade. Para tanto, são levantados alguns dados experimentais da estrutura, necessários para a aproximação e simulação dinâmica de um modelo simplificado. A excitação da base é realizada por atuadores que simulam as oscilações verticais de um perfil de estrada, a qual é definida de acordo com os estudos realizados por Dodds e Robson (1973). Isto permite a determinação de um histórico de carregamentos das regiões da estrutura do chassi sob a ação das molas da suspensão. Em seguida, é gerado um modelo estrutural simplificado do reboque em elementos finitos, chamado de global, no qual são determinadas as regiões sob ação das maiores tensões. Tendo identificada a região mais crítica da estrutura, é criado um modelo local desta parte, onde se pode observar a distribuição de tensões com mais detalhe, permitindo a identificação dos pontos de concentração de tensões. Desta forma, com a aplicação do método de análise global-local é possível a obtenção de resultados detalhados quanto aos esforços da estrutura com um menor custo computacional. / This work develops a project methodology in order to identify high stress zones on a light trailer structure in traffic through low quality roads and side roads. First, some experimental data are surveyed from the trailer structure, which are necessaries for the dynamics approximation and simulation of the simplified model. Linear actuators under the tires performing vertical oscillations of the road profile simulate base excitation that is defined by studies of Dodds and Robson (1973). It permits to determinate loads on chassis regions under the action of the suspension springs. After, a simplified finite element model of the trailer, called global, is created in order to determine regions with the highest stress. When this region is identified, a local finite element model is created in order to observe the stress distribution more detailed and enabling the identification of stress concentration points. In this way, it is possible to obtain detailed results of the structure stress applying global-local analysis with reduced computational costs.
14

Ferramentas para análise dinâmica e estrutural de um reboque de linha leve / Dynamic and structural analysis of a light trailer

Grison, Vagner January 2005 (has links)
Neste trabalho é desenvolvida uma metodologia de projeto para identificar as regiões críticas da estrutura de um reboque de linha leve sendo tracionado em pavimentos do tipo rodovia de baixa qualidade e estrada secundária de muito baixa qualidade. Para tanto, são levantados alguns dados experimentais da estrutura, necessários para a aproximação e simulação dinâmica de um modelo simplificado. A excitação da base é realizada por atuadores que simulam as oscilações verticais de um perfil de estrada, a qual é definida de acordo com os estudos realizados por Dodds e Robson (1973). Isto permite a determinação de um histórico de carregamentos das regiões da estrutura do chassi sob a ação das molas da suspensão. Em seguida, é gerado um modelo estrutural simplificado do reboque em elementos finitos, chamado de global, no qual são determinadas as regiões sob ação das maiores tensões. Tendo identificada a região mais crítica da estrutura, é criado um modelo local desta parte, onde se pode observar a distribuição de tensões com mais detalhe, permitindo a identificação dos pontos de concentração de tensões. Desta forma, com a aplicação do método de análise global-local é possível a obtenção de resultados detalhados quanto aos esforços da estrutura com um menor custo computacional. / This work develops a project methodology in order to identify high stress zones on a light trailer structure in traffic through low quality roads and side roads. First, some experimental data are surveyed from the trailer structure, which are necessaries for the dynamics approximation and simulation of the simplified model. Linear actuators under the tires performing vertical oscillations of the road profile simulate base excitation that is defined by studies of Dodds and Robson (1973). It permits to determinate loads on chassis regions under the action of the suspension springs. After, a simplified finite element model of the trailer, called global, is created in order to determine regions with the highest stress. When this region is identified, a local finite element model is created in order to observe the stress distribution more detailed and enabling the identification of stress concentration points. In this way, it is possible to obtain detailed results of the structure stress applying global-local analysis with reduced computational costs.
15

Ferramentas para análise dinâmica e estrutural de um reboque de linha leve / Dynamic and structural analysis of a light trailer

Grison, Vagner January 2005 (has links)
Neste trabalho é desenvolvida uma metodologia de projeto para identificar as regiões críticas da estrutura de um reboque de linha leve sendo tracionado em pavimentos do tipo rodovia de baixa qualidade e estrada secundária de muito baixa qualidade. Para tanto, são levantados alguns dados experimentais da estrutura, necessários para a aproximação e simulação dinâmica de um modelo simplificado. A excitação da base é realizada por atuadores que simulam as oscilações verticais de um perfil de estrada, a qual é definida de acordo com os estudos realizados por Dodds e Robson (1973). Isto permite a determinação de um histórico de carregamentos das regiões da estrutura do chassi sob a ação das molas da suspensão. Em seguida, é gerado um modelo estrutural simplificado do reboque em elementos finitos, chamado de global, no qual são determinadas as regiões sob ação das maiores tensões. Tendo identificada a região mais crítica da estrutura, é criado um modelo local desta parte, onde se pode observar a distribuição de tensões com mais detalhe, permitindo a identificação dos pontos de concentração de tensões. Desta forma, com a aplicação do método de análise global-local é possível a obtenção de resultados detalhados quanto aos esforços da estrutura com um menor custo computacional. / This work develops a project methodology in order to identify high stress zones on a light trailer structure in traffic through low quality roads and side roads. First, some experimental data are surveyed from the trailer structure, which are necessaries for the dynamics approximation and simulation of the simplified model. Linear actuators under the tires performing vertical oscillations of the road profile simulate base excitation that is defined by studies of Dodds and Robson (1973). It permits to determinate loads on chassis regions under the action of the suspension springs. After, a simplified finite element model of the trailer, called global, is created in order to determine regions with the highest stress. When this region is identified, a local finite element model is created in order to observe the stress distribution more detailed and enabling the identification of stress concentration points. In this way, it is possible to obtain detailed results of the structure stress applying global-local analysis with reduced computational costs.
16

On-shaft vibration measurement using a MEMS accelerometer for faults diagnosis in rotating machines

Elnady, Maged Elsaid January 2013 (has links)
The healthy condition of a rotating machine leads to safe and cheap operation of almost all industrial facilities and mechanical systems. To achieve such a goal, vibration-based condition monitoring has proved to be a well-accepted technique that detects incipient fault symptoms. The conventional way of On-Bearing Vibration Measurement (OBVM) captures symptoms of different faults, however, it requires a relatively expensive setup, an additional space for the auxiliary devices and cabling in addition to an experienced analyst. On-Shaft Vibration Measurement (OSVM) is an emerging method proposed to offer more reliable Faults Diagnosis (FD) tools with less number of sensors, minimal processing time and lower system and maintenance costs. The advancement in sensor and wireless communications technologies enables attaching a MEMS accelerometer with a miniaturised wireless data acquisition unit directly to the rotor without altering the machine dynamics. In this study, OSVM is analysed during constant speed and run-up operations of a test rig. The observations showed response modulation, hence, a Finite Element (FE) analysis has been carried out to help interpret the experimental observations. The FE analysis confirmed that the modulation is due to the rotary motion of the on-shaft sensor. A demodulation method has been developed to solve this problem. The FD capability of OSVM has been compared to that of OBVM using conventional analysis where the former provided more efficient diagnosis with less number of sensors. To incorporate more features, a method has been developed to diagnose faults based on Principal Component Analysis and Nearest Neighbour classifier. Furthermore, the method is enhanced using Linear Discriminant Analysis to do the diagnosis without the need for a classifier. Another faults diagnosis method has been developed that ensures the generalisation of extracted faults features from OSVM data of a specific machine to similar machines mounted on different foundations.
17

CONTROLLING QUASI-2D SEPARATION WITH FLOW INJECTION

Hunter Douglas Nowak (12467895) 27 April 2022 (has links)
<p>Highly loaded aerodynamic devices for propulsion and power generation are emerging to increase power output in a more compact machine are emerging. These devices can experience increased losses due to separation, as in the low-pressure turbine, which arise due to the operation at conditions that increases the adverse pressure gradients ore decrease the Reynolds number of the flow through the device. Therefore, flow control strategies become appealing to reduce losses at these conditions. This work aims to validate flow injection as an effective flow control strategy in the transonic regime.</p> <p>A test facility which was used to study boundary layer separation in a quasi-2d test article was modified to include flow injection and conditions were modified so that the facility was operated in the transonic regime. Valves were chosen which could achieve a wide range of excitation frequencies and the flow control ports were designed to accommodate their nominal flow rate. A preliminary test matrix was built while considering the limitations of the test facility.</p> <p>A numerical study was conducted to identify flow structures of interest and determine a preliminary understanding of the test article. The flow control was then added to the numerical study to guide the experimental set points for injected flow. The response of the flow to continuous slot blowing was characterized, and a 3D simulation with discrete injection ports was done to ensure the set-points determined from the 2D study were viable for discrete injection.</p> <p>Blow-down experiments were then conducted to study the behavior of bulk separation in a transonic regime for a quasi-2D geometry. Once behavior of the separation was understood, steady injection and then pulsated injection were applied in attempts to mitigate the separation. Steady injection was utilized to find the required pressure of injection relative to the total pressure at the inlet of the test article, while the pulsated injection served to identify a frequency at which the time averaged mitigation of separation was greatest.</p> <p>The experiments show that both steady and pulsated flow injection are viable techniques in flow control. It is also shown that pulsation does not allow for a lower pressure injection, but instead allows for the same effect with a lower mass flow requirement. Two-dimensional computational simulations are shown to be effective in determining injection frequencies but not the extent of separation or required injection pressures.</p>
18

Multi-regime Turbulent Combustion Modeling using Large Eddy Simulation/ Probability Density Function

Shashank Satyanarayana Kashyap (6945575) 14 August 2019 (has links)
Combustion research is at the forefront of development of clean and efficient IC engines, gas turbines, rocket propulsion systems etc. With the advent of faster computers and parallel programming, computational studies of turbulent combustion is increasing rapidly. Many turbulent combustion models have been previously developed based on certain underlying assumptions. One of the major assumptions of the models is the regime it can be used for: either premixed or non-premixed combustion. However in reality, combustion systems are multi-regime in nature, i.e.,\ co-existence of premixed and non-premixed modes. Thus, there is a need for development of multi-regime combustion models which closely follows the physics of combustion phenomena. Much of previous modeling efforts for multi-regime combustion was done using flamelet-type models. As a first, the current study uses the highly robust transported Probability Density Function (PDF) method coupled with Large Eddy Simulation (LES) to develop a multi-regime model. The model performance is tested for Sydney Flame L, a piloted methane-air turbulent flame. The concept of flame index is used to detect the extent of premixed and non-premixed combustion modes. The drawbacks of using the traditional flame index definition in the context of PDF method are identified. Necessary refinements to this definition, which are based on the species gradient magnitudes, are proposed for the multi-regime model development. This results in identifying a new model parameter beta which defines a gradient threshold for the calculation of flame index. A parametric study is done to determine a suitable value for beta, using which the multi-regime model performance is assessed for Flame L by comparing it against the widely used non-premixed PDF model for three mixing models: Modified Curl (MCurl), Interaction by Exchange with Mean (IEM) and Euclidean Minimum Spanning Trees (EMST). The multi-regime model shows a significant improvement in prediction of mean scalar quantities compared to the non-premixed PDF model when MCurl mixing model is used. Similar improvements are observed in the multi-regime model when IEM and EMST mixing models are used. The results show potential foundation for further multi-regime model development using PDF model.
19

Conceptual Design And Analysis Of An Industrial Type Vacuum Sweeper

Aygun, Buket 01 February 2009 (has links) (PDF)
In this thesis, design and development and manufacturing processes of an industrial type vacuum sweeper is presented. Thesis is financially supported by Ministry of Industry and Trade-Turkey and M&uuml / san A.S. (Makina &Uuml / retim Sanayi ve Ticaret A.S.) under SAN-TEZ project number 00028.STZ.2007-1. It is aimed to make innovative design changes and developments on the M&uuml / san VSM 060 type vacuum sweeper. To achieve this aim, alternative configuration designs are prepared by using commercial 3D modeling program, Catia&trade / V5. Basic vehicle structure is constructed. New M&uuml / san VSM 060 will be a fully electrically driven vehicle. All subsystems will be activated by using electrical motors whose power is supplied by batteries. All subsystems are mounted on the chassis which is a welded frame structure made up of 60x40x2 St37-2 grade steel tubes. Finite element analysis (FEA) of the chassis is performed by using commercial structural finite element analysis tools MSC Patran pre and post processor and MSC Nastran solver. Moment calculations are done for structural parts. Cleaning system of the new VSM 060 vehicle is decided to be a combination of mechanical and vacuum cleaning systems. An elevator system will be integrated in addition to vacuum system to pick up coarse particles. The vacuum system will mainly be utilized for very small size particle collection. Computational fluid dynamics (CFD) analyses are done by Punto M&uuml / hendislik Ltd. Sti. for the whole cleaning system components by using CFdesign, an upfront CFD analysis tool.
20

Énergie recyclée par conversion chimique pour application à la combustion dans le domaine aérospatial (ERC3) / Energy recovery by means of chemical conversion for use in aerospace combustion

Taddeo, Lucio 24 October 2017 (has links)
Le refroidissement actif par endocarburant permet d’assurer la tenue thermique d’un superstatoréacteur pour le vol hypersonique. Néanmoins, l’utilisation de cette technologie de refroidissement passe par la maitrise du couplage combustion – pyrolyse, qui fait de la définition d’une stratégie de contrôle du moteur un véritable défi. Une étude expérimentale a été réalisée afin d’analyser l’effet du paramètre de commande principal, le débit de combustible, sur des paramètres de sorties pertinents, à l’aide d’un dispositif de test spécifiquement conçu pour appréhender le couplage combustion – pyrolyse. Ceci a permis d’étudier la dynamique d’un circuit régénératif par rapport à ce paramètre de commande. Une étude cinétique paramétrique sur la pyrolyse du carburant a été conduite en parallèle de celle expérimentale afin d’affiner l’analyse et améliorer l’interprétation des expériences. La décomposition du carburant utilisé pour les tests (éthylène) a été prise en compte grâce à un mécanisme cinétique détaillé (153 espèces, 1185 réactions chimiques). / Regenerative cooling is a well-known cooling technique, suitable to ensure scramjets thermal protection. The development of regeneratively cooled engines using an endothermic propellant is a challenging task, especially because of the strong coupling between fuel decomposition and combustion, which makes the definition of an engine regulation strategy very hard. An experimental study, aiming at identifying the effect of fuel mass flow rate variations on a fuel cooled-combustor in terms of system dynamics has been carried out. A remotely controlled fuel-cooled combustor, designed by means of CDF calculations and suitable for the experimental analysis of combustion-pyrolysis coupling, has been used. In order to improve tests results analysis, a parametric study to characterize fuel decomposition has also been realized. The pyrolysis has been modeled by using a detailed kinetic mechanism (153 species, 1185 chemical reactions).

Page generated in 0.087 seconds