• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exploration par résonance magnétique de l'espace conformationnel et de la dynamique du facteur de transcription partiellement désordonné Engrailed-2 / The conformational space and dynamics of the partially disordered transcription factor engrailed-2 explored with magnetic resonance

Khan, Shahid Nawaz 12 March 2015 (has links)
Les protéines intrinsèquement désordonnées (IDP), dépourvues d’une structure rigide et stable, constituent une classe de protéines diverses et fonctionnellement importantes. La résonance magnétique nucléaire (RMN) est une technique spectroscopique bien établie pour caractériser les propriétés conformationnelles et dynamiques des IDP avec une résolution atomique. L’espace conformationnel, en général large et varié, des IPD en fait une cible difficile pour la biologie structurale dont le but est de déterminer avec précision et exactitude les propriétés structurales, dynamique et physico-chimiques qui sous-tendent la fonction des macromolécules biologiques. Ce manuscrit présente une étude biophysique détaillée de la région intrinsèquement désordonnée (IDR) du facteur de transcription Engrailed-2, avant tout par RMN. Après une présentation de cette homéoprotéine, nous décrivons les protocoles d’expression et de purification de cette protéine isotopiquement marquée. Nous introduisons ensuite une nouvelle approche pour la caractérisation des mouvements pico- et nanoseconde des protéines intrinsèquement désordonnées à partir de données de relaxation des spins nucléaires enregistrées à plusieurs champs magnétiques. Les effets de relaxation paramagnétique (PRE) ont été utilisés pour identifier des interactions transitoires entre la région désordonnée et l’homéodomaine d’Engrailed-2. L’interaction d’Engrailed-2 avec l’ADN a été étudiée en détail en utilisant l’anisotropie de fluorescence sur une série de constructions de la protéine, afin de mettre en lumière le rôle de la partie désordonnée dans l’interaction avec l’ADN. Nous avons également employé la résonance paramagnétique électronique pour tenter de détecter une interaction potentielle entre le noyau hydrophobe de l’hexapeptide dans la région désordonnée et l’homéodomaine. Les couplages dipolaires résiduels (RDC) dans les paires 1H-15N, Cα-Hα et Cα-C′ ont également été mesurés sur des échantillons d’Engrailed en milieu anisotrope. Ces données seront essentielles pour reconstituer l’espace conformationnel d’Engrailed 2. L’ensemble des approches présentées a permis de constituer un socle solide de connaissances qui permettent de mieux comprendre les propriétés conformationnelles, dynamiques et fonctionnelles de l’IDR d’Engrailed-2. / Intrinsically Disordered Proteins (IDPs), which lack a stable rigid structure constitute a large and functionally important class of proteins. Nuclear Magnetic Resonance (NMR) is a well-established technique to characterize the structural and dynamical features of IDPs at atomic resolution. The broad conformational space of IDPs makes them challenging targets for structural biology to define their precise structural features and motions, the physical and chemical properties that underlie their biological functions. The present thesis establishes biophysical investigation of the disordered region of the transcription factor Engrailed-2 (13.5 kDa) primarily by NMR. After describing the protocol of expression and purification of the isotopically labeled protein, we present a novel approach to characterize the pico – nano second motions in IDPs using nuclear spin relaxation data at multiple fields. Paramagnetic Relaxation Enhancements (PREs) are used to identify transient long-range interactions between the disordered region and the folded homeodomain of Engrailed-2. Binding to DNA was studied by fluorescence anisotropy and highlights the role of the disordered region in the DNA binding. We used Electron Paramagnetic Resonance (EPR) to probe the potential interaction between the hydrophobic cluster (hexapeptide) in the disordered region and the homeodomain. The one-bond 1H-15N, Cα-Hα and Cα-C′ residual dipolar couplings (RDCs) measured for Engrailed-2 provide important constraints for the refinement of the conformational space of Engrailed_2. All these approaches provide valuable insights in understanding the structural, dynamical and functional properties of this IDP.
12

Caractérisation structurale par RMN des interactions entre protéines du complexe polymérase du virus respiratoire syncytial et des protéines partenaires cellulaires / Structural caracterizsation by NMR of interactions between proteins of respiratory syncytial virus polymerase complex and cellular partner proteins

Cardone, Christophe 16 December 2019 (has links)
Le virus respiratoire syncytial humain (hRSV) est le principal agent pathogène responsable des bronchiolites. Le complexe ARN polymérase (RdRp), du hRSV, nécessaire à la réplication de son génome, est composé a minima de la sous-unité catalytique (L), de son principal cofacteur qu’est la phosphoprotéine (P) et de la nucléoprotéine (N) qui assure l’encapsidation du génome viral. Le cœur de mon projet doctoral a été l’étude dynamique et structurale de domaines des protéines N et P du hRSV ainsi que leurs interactions avec certaines protéines cellulaires principalement par résonance magnétique nucléaire.Dans un premier temps j’ai étudié une potentielle interaction entre 2 domaines appartenant à la protéine N et à la protéine cellulaire Tax1BP1 impliquée notamment dans la régulation de l’autophagie. Ensuite, j’ai entrepris une étude structurale et dynamique de hRSV-P isolée notamment dans le but de déterminer des contacts transitoires au sein de la protéine et d’obtenir la structure tridimensionnelle du domaine d’oligomérisation de P. Enfin, j'ai participé à la caractérisation de l’interaction entre la protéine hRSV-P et le cofacteur de transcription du hRSV hRSV-M2-1, puis entre hRSV P et la phosphatase cellulaire PP1α, afin d’en cartographier les régions de contacts. / Human respiratory syncytial virus (hRSV) is the main pathogen responsible for bronchiolitis. The RNA polymerase complex (RdRp) of hRSV, necessary for the replication of its genome, is composed at least of the catalytic subunit (L), its main cofactor phosphoprotein (P) and nucleoprotein (N), which encapsidates the viral genome. At the heart of my doctoral project was the dynamic and structural study of domains of the proteins N and P of the hRSV as well as of their interactions with several cellular proteins, mainly by nuclear magnetic resonance.Firstly, I studied a potential interaction between 2 domains belonging to the N protein and to the Tax1BP1 cellular protein involved notably in regulation of autophagy. Secondly, I undertook a structural and dynamic study of isolated hRSV-P in order to determine transient contacts within the protein and to obtain the three-dimensional structure of the P oligomerization domain. Last, I participated in the characterization of the interaction between the hRSV-P protein and the hRSV transcription cofactor hRSV-M2-1, and between hRSV P and the cellular phosphatase PP1α to map the contact regions.
13

Caractérisation des protéines intrinsèquement désordonnées par résonance magnétique nucléaire / Characterisation of intrinsically disordered proteins by nuclear magnetic resonance

Ozenne, Valéry 28 November 2012 (has links)
Près de 40% des protéines présentes dans les cellules sont prédites partiellement ou complètement désordonnées. Ces protéines dépourvues de structure tridimensionnelle à l'état natif sont impliquées dans de nombreux mécanismes biologiques, la flexibilité jouant un rôle moteur dans les mécanismes de reconnaissance moléculaire. La prise en considération de l'existence de flexibilité au sein des protéines et des interactions protéines-protéines a nécessité le renouvellement de nos connaissances, de notre appréhension des fonctions biologiques ainsi que des approches pour étudier et interpréter ces phénomènes. La méthode retenue pour étudier ces transitions conformationnelles est la spectroscopie par résonance magnétique nucléaire. Elle dispose d'une sensibilité unique, d'une résolution à l'échelle atomique et permet par diverses expériences d'accéder à l'ensemble des échelles de temps définissant les mouvements de ces protéines. Nous combinons ces mesures expérimentales à un modèle statistique représentant l'ensemble du paysage énergétique des protéines désordonnées : la description par ensemble explicite de structures. Ce modèle est une représentation discrète des différents états échantillonnés par ces protéines. Il permet, combinant les déplacements chimiques, les couplages dipolaires et la relaxation paramagnétique, de développer une description moléculaire de l'état déplié en caractérisant à la fois l'information locale et l'information à longue portée présente dans les protéines intrinsèquement désordonnées. / Around 40% of the human genome does not fold into stable three-dimensional structures but are either unfolded, or contain unfolded regions of significant length. The inherent flexibility of this class of proteins is essential for their function in a vast range of biomolecular process such as molecular recognition. In order to take into account the specificity of these interactions, it has been necessary to invent new approaches to study and interpret their behaviour. Nuclear magnetic resonance spectroscopy is a unique atomic resolution probe which is sensitive to a very large range of time scales. We combine experimental NMR data with a statistical model describing the energy landscape of unfolded state : the explicit ensemble description. This model is a discrete representation of the different states of theses proteins. Combining chemical shifts, residual dipolar couplings and paramagnetic relaxation enhancement, it is then possible to develop a molecular description of the unfolded state caracterising both the local and long-range information of intrinsically disordered proteins.
14

Shifting the boundaries of experimental studies in engineering enzymatic functions : combining the benefits of computational and experimental methods

Ebert, Maximilian 12 1900 (has links)
Cette thèse comporte quatre fichiers vidéo. This thesis comes with four video files. / L'industrie chimique mondiale est en pleine mutation, cherchant des solutions pour rendre la synthèse organique classique plus durable. Une telle solution consiste à passer de la catalyse chimique classique à la biocatalyse. Bien que les avantages des enzymes incluent leur stéréo, régio et chimiosélectivité, cette sélectivité réduit souvent leur promiscuité. Les efforts requis pour adapter la fonction enzymatique aux réactions désirées se sont révélés d'une efficacité modérée, de sorte que des méthodes rapides et rentables sont nécessaires pour générer des biocatalyseurs qui rendront la production chimique plus efficace. Dans l’ère de la bioinformatique et des outils de calcul pour soutenir l'ingénierie des enzymes, le développement rapide de nouvelles fonctions enzymatiques devient une réalité. Cette thèse commence par un examen des développements récents sur les outils de calcul pour l’ingénierie des enzymes. Ceci est suivi par un exemple de l’ingénierie des enzymes purement expérimental ainsi que de l’évolution des protéines. Nous avons exploré l’espace mutationnel d'une enzyme primitive, la dihydrofolate réductase R67 (DHFR R67), en utilisant l’ingénierie semi-rationnelle des protéines. La conception rationnelle d’une librarie de mutants, ou «Smart library design», impliquait l’association covalente de monomères de l’homotétramère DHFR R67 en dimères afin d’augmenter la diversité de la librairie d’enzymes mutées. Le criblage par activité enzymatique a révélé un fort biais pour le maintien de la séquence native dans un des protomères tout en tolérant une variation de séquence élevée pour le deuxième. Il est plausible que les protomères natifs procurent l’activité observée, de sorte que nos efforts pour modifier le site actif de la DHFR R67 peuvent n’avoir été que modérément fructueux. Les limites des méthodes expérimentales sont ensuite abordées par le développement d’outils qui facilitent la prédiction des points chauds mutationnels, c’est-à-dire les sites privilégiés à muter afin de moduler la fonction. Le développement de ces techniques est intensif en termes de calcul, car les protéines sont de grandes molécules complexes dans un environnement à base d’eau, l’un des solvants les plus difficiles à modéliser. Nous présentons l’identification rapide des points chauds mutationnels spécifiques au substrat en utilisant l'exemple d’une enzyme cytochrome P450 industriellement pertinente, la CYP102A1. En appliquant la technique de simulation de la dynamique moléculaire par la force de polarisation adaptative, ou «ABF», nous confirmons les points chauds mutationnels connus pour l’hydroxylation des acides gras tout en identifiant de nouveaux points chauds mutationnels. Nous prédisons également la conformation du substrat naturel, l’acide palmitique, dans le site actif et nous appliquons ces connaissances pour effectuer un criblage virtuel d'autres substrats de cette enzyme. Nous effectuons ensuite des simulations de dynamique moléculaire pour traiter l’impact potentiel de la dynamique des protéines sur la catalyse enzymatique, qui est le sujet de discussions animées entre les experts du domaine. Avec la disponibilité accrue de structures cristallines dans la banque de données de protéines (PDB), il devient clair qu’une seule structure de protéine n’est pas suffisante pour élucider la fonction enzymatique. Nous le démontrons en analysant quatre structures cristallines que nous avons obtenues d’une enzyme β-lactamase, parmi lesquelles un réarrangement important des résidus clés du site actif est observable. Nous avons réalisé de longues simulations de dynamique moléculaire pour générer un ensemble de structures suggérant que les structures cristallines ne reflètent pas nécessairement la conformation de plus basse énergie. Enfin, nous étudions la nécessité de compléter de manière informatisée un hémisphère où l’expérimental n’est actuellement pas possible, à savoir la prédiction de la migration des gaz dans les enzymes. À titre d'exemple, la réactivité des enzymes cytochrome P450 dépend de la disponibilité des molécules d’oxygène envers l’hème du site actif. Par le biais de simulations de la dynamique moléculaire de type Simulation Implicite du Ligand (ILS), nous dérivons le paysage de l’énergie libre de petites molécules neutres de gaz pour cartographier les canaux potentiels empruntés par les gaz dans les cytochromes P450 : CYP102A1 et CYP102A5. La comparaison pour les gaz CO, N2 et O2 suggère que ces enzymes évoluent vers l’exclusion du CO inhibiteur. De plus, nous prédisons que les canaux empruntés par les gaz sont distincts des canaux empruntés par le substrat connu et que ces canaux peuvent donc être modifiés indépendamment les uns des autres. / The chemical industry worldwide is at a turning point, seeking solutions to make classical organic synthesis more sustainable. One such solution is to shift from classical catalysis to biocatalysis. Although the advantages of enzymes include their stereo-, regio-, and chemoselectivity, their selectivity often reduces versatility. Past efforts to tailor enzymatic function towards desired reactions have met with moderate effectiveness, such that fast and cost-effective methods are in demand to generate biocatalysts that will render the production of fine and bulk chemical production more benign. In the wake of bioinformatics and computational tools to support enzyme engineering, the fast development of new enzyme functions is becoming a reality. This thesis begins with a review of recent developments on computational tools for enzyme engineering. This is followed by an example of purely experimental enzyme engineering and protein evolution. We explored the mutational space of a primitive enzyme, the R67 dihydrofolate reductase (DHFR), using semi-rational protein engineering. ‘Smart library design’ involved fusing monomers of the homotetrameric R67 DHFR into dimers, to increase the diversity in the resulting mutated enzyme libraries. Activity-based screening revealed a strong bias for maintenance of the native sequence in one protomer with tolerance for high sequence variation in the second. It is plausible that the native protomers procure the observed activity, such that our efforts to modify the enzyme active site may have been only moderately fruitful. The limitations of experimental methods are then addressed by developing tools that facilitate computational mutational hotspot prediction. Developing these techniques is computationally intensive, as proteins are large molecular objects and work in aqueous media, one of the most complex solvents to model. We present the rapid, substrate-specific identification of mutational hotspots using the example of the industrially relevant P450 cytochrome CYP102A1. Applying the adaptive biasing force (ABF) molecular dynamics simulation technique, we confirm the known mutational hotspots for fatty acid hydroxylation and identify a new one. We also predict a catalytic binding pose for the natural substrate, palmitic acid, and apply that knowledge to perform virtual screening for further substrates for this enzyme. We then perform molecular dynamics simulations to address the potential impact of protein dynamics on enzyme catalysis, which is the topic of heated discussions among experts in the field. With the availability of more crystal structures in the Protein Data Bank, it is becoming clear that a single protein structure is not sufficient to elucidate enzyme function. We demonstrate this by analyzing four crystal structures we obtained of a β-lactamase enzyme, among which a striking rearrangement of key active site residues was observed. We performed long molecular dynamics simulations to generate a structural ensemble that suggests that crystal structures do not necessarily reflect the conformation of lowest energy. Finally, we address the need to computationally complement an area where experimentation is not currently possible, namely the prediction of gas migration into enzymes. As an example, the reactivity of P450 cytochrome enzymes depends on the availability of molecular oxygen at the active-site heme. Using the Implicit Ligand Sampling (ILS) molecular dynamics simulation technique, we derive the free energy landscape of small neutral gas molecules to map potential gas channels in cytochrome P450 CYP102A1 and CYP102A5. Comparison of CO, N2 and O2 suggests that those enzymes evolved towards exclusion of the inhibiting CO. In addition, we predict that gas channels are distinct from known substrate channels and therefore can be engineered independently from one another.
15

Towards higher predictability in enzyme engineering : investigation of protein epistasis in dynamic ß-lactamases and Cal-A lipase

Alejaldre Ripalda, Lorea 12 1900 (has links)
L'ingénierie enzymatique est un outil très avantageux dans l'industrie biotechnologique. Elle permet d'adapter les enzymes à une activité ou à une condition de réaction spécifique. En outre, elle peut permettre de déchiffrer les éléments clés qui ont facilité leur modification. Bien que l'ingénierie enzymatique soit largement pratiquée, elle comporte encore plusieurs goulets d'étranglement. Certains de ces goulets d'étranglement sont techniques, comme le développement de méthodologies pour la création de banques de mutations ciblées ou la réalisation de criblages à haut débit, et d'autres sont conceptuels, comme le déchiffrage des caractéristiques clés pertinentes d'une protéine cible pour la réussite d'un projet d'ingénierie. Parmi ces défis, l'épistasie intra-génique, ou la non-additivité des effets phénotypiques des mutations, est une caractéristique qui entrave grandement la prévisibilité. L'amélioration de l'ingénierie enzymatique nécessite une approche multidisciplinaire qui inclut une meilleure compréhension des relations structure-fonction-évolution. Cette thèse vise à contribuer à l'avancement de l'ingénierie enzymatique en étudiant deux systèmes modèles. Premièrement, des variantes dynamiques de la ß-lactamase TEM-1 ont été choisies pour étudier le lien entre la dynamique des protéines et l'évolution. La ß-lactamase TEM-1 a été largement caractérisée dans la littérature, ce qui s'est traduit par des connaissances approfondies sur son mécanisme de réaction, ses caractéristiques structurelles et son évolution. Les variantes de la ß-lactamase TEM-1 utilisées comme système modèle dans cette thèse ont été largement caractérisées, montrant une dynamique accrue à l'échelle temporelle pertinente pour la catalyse (µs à ms) mais maintenant la reconnaissance du substrat. Dans cette thèse, l'évolution in vitro de ces variantes dynamiques a été réalisée par des cycles itératifs de mutagenèse et de sélection aléatoires pour permettre une exploration impartiale du paysage de ‘fitness’. Nous démontrons que la présence de ces mouvements particuliers au début de l'évolution a permis d'accéder à des voies de mutations connues. De plus, des interactions épistatiques connues ont été introduites dans les variantes dynamiques. Leur caractérisation in silico et cinétique a révélé que les mouvements supplémentaires sur l'échelle de temps de la catalyse ont permis d'accéder à des conformations conduisant à une fonction améliorée, comme dans le TEM-1 natif. Dans l'ensemble, nous démontrons que l'évolution de la b-lactamase TEM-1 vers une nouvelle fonction est compatible avec divers mouvements à l'échelle de temps µs à ms. Il reste à savoir si cela peut se traduire par d'autres enzymes ayant un potentiel biotechnologique. Deuxièmement, la lipase Cal-A, pertinente sur le plan industriel, a été choisie pour identifier les caractéristiques qui pourraient faciliter son ingénierie. La lipase Cal-A présente des caractéristiques telles que la polyvalence du substrat et une grande stabilité thermique et réactivité qui la rendent attrayante pour la modification des triglycérides ou la synthèse de molécules pertinentes dans les industries alimentaire et pharmaceutique. Contrairement à TEM-1, la plupart des études d'évolution in vitro de la lipase Cal-A ont été réalisées dans un but industriel, avec une exploration limitée de l'espace de mutation. Par conséquent, les caractéristiques qui définissent la fonction de la lipase Cal-A restent insaisissables. Dans cette thèse, nous faisons état de la mutagenèse ciblée de la lipase Cal-A, confirmant l'existence d'une région clé pour la reconnaissance du substrat. Cela a été fait en combinant une nouvelle méthodologie de création de bibliothèque basée sur l'assemblage Golden-gate avec une visualisation structurelle basée sur des scripts pour identifier et cartographier les mutations sélectionnées dans la structure 3D. La caractérisation et la déconvolution de deux des plus aptes ont révélé l'existence d'une épistasie dans l'évolution de la lipase Cal-A vers une nouvelle fonction. Dans l'ensemble, nous démontrons que l’identification d'une variété de propriétés suite à la mutagenèse ciblée peut grandement améliorer la connaissance d'une enzyme. Cette information peut être appliquée pour améliorer l'efficacité de l'ingénierie dirigée. / Enzyme engineering is a tool with great utility in the biotechnological industry. It allows to tailor enzymes to a specific activity or reaction condition. In addition, it can allow to decipher key elements that facilitated their modification. While enzyme engineering is extensively practised, it still entails several bottlenecks. Some of these bottlenecks are technical such as the development of methodologies for creating targeted mutational libraries or performing high-throughput screening and some are conceptual such as deciphering the key relevant features in a target protein for a successful engineering project. Among these challenges, intragenic epistasis, or the non-additivity of the phenotypic effects of mutations, is a feature that greatly hinders predictability. Improving enzyme engineering needs a multidisciplinary approach that includes gaining a better understanding of structure-function-evolution relations. This thesis seeks to contribute in the advancement of enzyme engineering by investigating two model systems. First, dynamic variants of TEM-1 ß-lactamase were chosen to investigate the link between protein dynamics and evolution. TEM-1 ß-lactamase has been extensively characterized in the literature, which has translated into extensive knowledge on its reaction mechanism, structural features and evolution. The variants of TEM-1 ß-lactamase used as model system in this thesis had been extensively characterized, showing increased dynamics at the timescale relevant to catalysis (µs to ms) but maintaining substrate recognition. In this thesis, in vitro evolution of these dynamic variants was done by iterative rounds of random mutagenesis and selection to allow an unbiased exploration of the fitness landscape. We demonstrate that the presence of these particular motions at the outset of evolution allowed access to known mutational pathways. In addition, known epistatic interactions were introduced in the dynamic variants. Their in silico and kinetic characterization revealed that the additional motions on the timescale of catalysis allowed access to conformations leading to enhanced function, as in native TEM-1. Overall, we demonstrate that the evolution of TEM-1 b-lactamase toward new function is compatible with diverse motions at the µs to ms timescale. Whether this can be translated to other enzymes with biotechnological potential remains to be explored. Secondly, the industrially relevant Cal-A lipase was chosen to identify features that could facilitate its engineering. Cal-A lipase presents characteristics such as substrate versatility and high thermal stability and reactivity that make it attractive for modification of triglycerides or synthesis of relevant molecules in the food and pharmaceutical industries. Contrary to TEM-1, most in vitro evolution studies of Cal-A lipase have been done towards an industrially-specified goal, with limited exploration of mutational space. As a result, features that define function in Cal-A lipase remain elusive. In this thesis, we report on focused mutagenesis of Cal-A lipase, confirming the existence of a key region for substrate recognition. This was done by combining a novel library creation methodology based on Golden-gate assembly with script-based structural visualization to identify and map the selected mutations into the 3D structure. The characterization and deconvolution of two of the fittest revealed the existence of epistasis in the evolution of Cal-A lipase towards new function. Overall, we demonstrate that mapping a variety of properties following mutagenesis targeted to specific regions can greatly improve knowledge of an enzyme that can be applied to improve the efficiency of directed engineering.
16

Predicting biomolecular function from 3D dynamics : sequence-sensitive coarse-grained elastic network model coupled to machine learning

Mailhot, Olivier 08 1900 (has links)
La dynamique structurelle des biomolécules est intimement liée à leur fonction, mais très coûteuse à étudier expériementalement. Pour cette raison, de nombreuses méthodologies computationnelles ont été développées afin de simuler la dynamique structurelle biomoléculaire. Toutefois, lorsque l'on s'intéresse à la modélisation des effects de milliers de mutations, les méthodes de simulations classiques comme la dynamique moléculaire, que ce soit à l'échelle atomique ou gros-grain, sont trop coûteuses pour la majorité des applications. D'autre part, les méthodes d'analyse de modes normaux de modèles de réseaux élastiques gros-grain (ENM pour "elastic network model") sont très rapides et procurent des solutions analytiques comprenant toutes les échelles de temps. Par contre, la majorité des ENMs considèrent seulement la géométrie du squelette biomoléculaire, ce qui en fait de mauvais choix pour étudier les effets de mutations qui ne changeraient pas cette géométrie. Le "Elastic Network Contact Model" (ENCoM) est le premier ENM sensible à la séquence de la biomolécule à l'étude, ce qui rend possible son utilisation pour l'exploration efficace d'espaces conformationnels complets de variants de séquence. La présente thèse introduit le pipeline computationel ENCoM-DynaSig-ML, qui réduit les espaces conformationnels prédits par ENCoM à des Signatures Dynamiques qui sont ensuite utilisées pour entraîner des modèles d'apprentissage machine simples. ENCoM-DynaSig-ML est capable de prédire la fonction de variants de séquence avec une précision significative, est complémentaire à toutes les méthodes existantes, et peut générer de nouvelles hypothèses à propos des éléments importants de dynamique structurelle pour une fonction moléculaire donnée. Nous présentons trois exemples d'étude de relations séquence-dynamique-fonction: la maturation des microARN, le potentiel d'activation de ligands du récepteur mu-opioïde et l'efficacité enzymatique de l'enzyme VIM-2 lactamase. Cette application novatrice de l'analyse des modes normaux est rapide, demandant seulement quelques secondes de temps de calcul par variant de séquence, et est généralisable à toute biomolécule pour laquelle des données expérimentale de mutagénèse sont disponibles. / The dynamics of biomolecules are intimately tied to their functions but experimentally elusive, making their computational study attractive. When modelling the effects of thousands of mutations, time-stepping methods such as classical or enhanced sampling molecular dynamics are too costly for most applications. On the other hand, normal mode analysis of coarse-grained elastic network models (ENMs) provides fast analytical dynamics spanning all timescales. However, the vast majority of ENMs consider backbone geometry alone, making them a poor choice to study point mutations which do not affect the equilibrium structure. The Elastic Network Contact Model (ENCoM) is the first sequence-sensitive ENM, enabling its use for the efficient exploration of full conformational spaces from sequence variants. The present work introduces the ENCoM-DynaSig-ML computational pipeline, in which the ENCoM conformational spaces are reduced to Dynamical Signatures and coupled to simple machine learning algorithms. ENCoM-DynaSig-ML predicts the function of sequence variants with significant accuracy, is complementary to all existing methods, and can generate new hypotheses about which dynamical features are important for the studied biomolecule's function. Examples given are the maturation efficiency of microRNA variants, the activation potential of mu-opioid receptor ligands and the effect of point mutations on VIM-2 lactamase's enzymatic efficiency. This novel application of normal mode analysis is very fast, taking a few seconds CPU time per variant, and is generalizable to any biomolecule on which experimental mutagenesis data exist.

Page generated in 0.0655 seconds