• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilisation des trajectoires quantiques dans des processus dynamiques moléculaires

Gindensperger, Etienne 26 May 2003 (has links) (PDF)
La thématique générale de cette thèse essentiellement méthodologique est l'utilisation des trajectoires quantiques, définies par de Broglie et Bohm, dans l'étude de processus dynamiques moléculaires. Deux types d'études seront présentés. Dans la première, nous avons utilisé les trajectoires quantiques pour résoudre la forme hydrodynamique de l'équation de Schrödinger. Une méthode numérique qui combine l'utilisation d'une grille fixe et de grilles mobiles dans le temps a été développée et appliquée à la photodissociation de la molécule H2. Cette méthode peut permettre un gain de temps de calcul et d'espace mémoire, surtout dans des processus comme la dissociation directe. Deuxièmement, nous avons utilisé les trajectoires quantiques pour établir une nouvelle méthode mixte classique / quantique. Ce type de méthode s'avère utile pour traiter la dynamique de systèmes trop grands pour avoir accès à des résultats quantiques exacts, et dans lesquels certains degrés de liberté nécessitent néanmoins un traitement quantique. Dans notre méthode, les positions des trajectoires quantiques interviennent dans les équations des variables classiques du système dans la force que ces dernières ressent. Les résultats obtenus par cette méthode lors de l'étude de trois systèmes suffisamment simples pour avoir accès aux résultats exacts, ont été comparés à ceux obtenus par d?autres méthodes mixtes déjà largement utilisées.
2

Quantum dynamics and laser control for photochemistry / Dynamique quantique et contrôle par laser pour la photochimie

Sala, Matthieu 08 April 2015 (has links)
Cette thèse porte sur la description théorique de processus dynamiques ultra-rapides de molécules polyatomiques et de leur contrôle par impulsions laser. Nous avons d’abord étudié la photochimie de l’aniline à l’aide de calculs de structure électronique. Nous avons d´écrit plusieurs régions clé des surfaces d’énergie potentielle et analysé ces résultats en relation avec les données expérimentales existantes. La photochimie de la pyrazine a été étudiée par des calculs de dynamiques quantique basés sur un Hamiltonien modèle incluant les quatre états électroniques excités de plus basse énergie et seize modes de vibration. Nous montrons que l’état sombre Au(nπ∗) joue un rôle important dans la dynamique de la molécule après photo-excitation. Un modèle simplifié à deux états et quatre modes a été utilisé pour étudier le contrôle par laser de la dynamique de la pyrazine photo-excitée. Nous proposons un mécanisme visant à augmenter la durée de vie de l’état B2u(ππ∗) en utilisant l’effet Stark induit par une impulsion laser intense non-résonante. / The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and of their control by laser pulses. We first use electronic structure calculations to study the photochemistry of aniline. A umber of previously unknown features of the potential energy surfaces of the low-lying elec-tronic states are reported, and analyzed in relation with the experimental results available. We use quantum dynamics simulations, based on a model Hamiltonian including the four lowest excited electronic states and sixteen vibrational modes, to investigate the photochem-istry of pyrazine. We show that the dark Au(nπ∗) state plays an important role in the ultrafast dynamics of the molecule after photoexcitation. The laser control of the excited state dynamics of pyrazine is studied using a simplified two-state four-mode model Hamiltonian. We propose a control mechanism to enhance the lifetime of the bright B2u(ππ∗) state using the Stark effect induced by a strong non-resonant laser pulse. We finally focus on the laser control of the tunneling dynamics of the NHD2 molecule, using accurate full-dimensional potential energy and dipole moment surfaces. We use simple effective Hamiltonians to explore the effect of the laser parameters on the dynamics and design suitable laser fields to achieve the control. These laser fields are then used in MCTDH quantum dynamics simulations. Both enhancement and suppression of tunneling are achieved in our model.

Page generated in 0.1217 seconds