• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 11
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nde1-mediated inhibition of ciliogenesis controls cell cycle re-entry

Kim, Sehyun. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 118-130.
2

Structural and functional analysis of antiparallel coiled coils from Escherichia coli osmosensory protein ProP and rat cytoplasmic dynein /

Zoetewey, David Lawrence. January 2008 (has links)
Thesis (Ph.D. in Molecular Biology) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 155-167). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
3

The Role of the Light Intermediate Chains in Cytoplasmic Dynein Function: a Dissertation

Tynan, Sharon H. 21 March 2000 (has links)
Cytoplasmic dynein is a multisubunit complex involved in retrograde transport of cellular components along microtubules. The heavy chains (HC) are very large catalytic subunits which possess microtubule binding ability. The intermediate chains (IC) are responsible for targeting dynein to its appropriate cargo by interacting with the dynactin complex. The light intermediate chains (LIC) are previously unexplored subunits that have been proposed to modulate dynein activity by regulating the motor or the IC-dynactin interaction. The light chains (LC) are a newly identified class of subunit which are also thought to have regulatory functions. In the first part of this work, I analyzed the relationship between the four SDS-PAGE gel bands that comprise the light intermediate chains. 1- and 2-D electrophoresis before and after alkaline phosphatase treatment revealed that the four bands are derived from two different polypeptides, each of which is phosphorylated. Peptide microsequencing of these subunits yielded sequences that indicated similarity between them. cDNA cloning of the rat LICs revealed the presence of a conserved P-loop sequence and a very high degree of homology between the two different rat LICs and among LICs from different species. The second series of experiments was designed to analyze the association of pericentrin with cytoplasmic dynein. First, various dynein and dynactin subunits were co-associate with pericentrin in these experiments. Co-precipitation from 35S labeled cell extracts revealed a direct interaction between LIC and pericentrin. Comparison of pericentrin binding by LICl and LIC2 showed that only LICl was able to bind. Further investigation of the relationship between LICl and LIC2 demonstrated that each LIC will self-associate, but they will not form heterooligomers. Additionally, using co-overexpression and immunoprecipitation of LICl, LIC2, and HC, I have shown that binding of the two LICs to HC is mutually exclusive. Finally, I investigated the relationships between dynein HC, IC, and LIC by examining the interactions among the subunits. IC and LIC were both found to bind to the HC, but not to each other. Despite the lack of interaction between IC and LIC, they are, in fact, present in the same dynein complexes and they have partially overlapping binding sites within the N-terminal sequence of the HC. The HC dimerization site was determined to extend through a large portion of the N-terminus, and it includes both the IC and LIC binding sites, although these subunits are not required for dimerization. Together these studies implicate the light intermediate chains in dynein targeting. Targeting of dynein to its cargo has been thought to be performed by the dynactin complex, and for one particular cargo, the kinetochore, there is considerable evidence to support this model. The results presented here suggest that the light intermediate chains appear to function in a separate, non-dynactin-based targeting mechanism.
4

Light Intermediate Chain 1: a Multifunctional Cargo Binder for Cytoplasmic Dynein 1: a Dissertation

Wadzinski, Thomas 11 September 2006 (has links)
Cells as dynamic, interactive, and self contained units of life have a need for molecular motors that can create physical forces to move cargoes within the cell. Cytoplasmic dynein 1 is one such molecular motor that has many functions in the cell. The number and variety of functions that involve cytoplasmic dynein 1 suggest that there are a number of different binding sites on dynein for different proteins. Cytoplasmic dynein 1 is a multiprotein complex made up of six different subunit families. The many different combinations of subunits that could be used to make up a cytoplasmic dynein 1 holocomplex provides the variety of different binding sites for cargoes that can be individually regulated. The following chapters flush out how light intermediate chain 1 (LIC1), a subunit of cytoplasmic dynein 1, is involved with multiple dynein functions involving the binding of different cargoes to the cytoplasmic dynein 1 holocomplex, and how the binding of these cargoes can be regulated. First, LIC1 is found to be involved in the spindle assembly checkpoint. LIC1 appears to facilitate the removal of Mad1-Mad2, a complex important in producing a wait anaphase signal, from kinetochores. Second, the involvement of LIC1 in the spindle assembly checkpoint requires the phosphorylation of LIC1 at a putative Cdk1 phosphorylation site. This site is located in a domain of LIC1 that binds various proteins suggesting that this phosphorylation could also regulate these interactions. Third, LIC1 is involved in the centrosomal assembly of pericentrin, an important centrosomal protein. From the data presented herein, LIC1 is shaping up as a multifunctional cargo binder for cytoplasmic dynein 1 that requires regulation of its various cargoes.
5

Roles of Lissencephaly Gene, LIS1, in Regulating Cytoplasmic Dynein Functions: a Dissertation

Tai, Chin-Yin 30 September 2002 (has links)
Spontaneous mutations in the human LIS1 gene are responsible for Type I lissencephaly ("smooth brain"). The distribution of neurons within the cerebral cortex of lissencephalic children appears randomized, probably owing to a defect in neuronal migration during early development. LIS1 has been implicated in the dynein pathway by genetic analyses in fungi. We previously reported that the vertebrate LIS1 co-localized with dynein at prometaphase kinetochores, and interference with LIS1 function at kinetochore caused misalignment of chromosomes onto the metaphase plate. This leads to a hypothesis that LIS1 might regulate kinetochore protein targeting. In order to test this hypothesis, I created dominant inhibitory constructs of LIS1. After removal of the endogenous LIS1 from the kinetochore by overexpression of the N-terminal self-association domain of LIS1, dynein and dynactin remained at the kinetochores. This result indicated that LIS1 is not required for dynein to localize at the kinetochore. Next, CLIP-170 was displaced from the kinetochores in the LIS1 full-length and the C-terminal WD-repeat overexpressers, suggesting a role for LIS1 in targeting CLIP-170 onto kinetochores. LIS1 was co-immunoprecipitated with dynein and dynactin. Its association with kinetochores was mediated by dynein and dynactin, suggesting LIS1 might interact directly with subunits of dynein and/or dynactin complexes. I found that LIS1 interacted with the heavy and intermediate chains (HC and IC) of dynein complex, and the dynamitin subunit of dynactin complex. In addition to kinetochore targeting, the LIS1 C-terminal WD-repeat domain was responsible for interactions with dynein and dynactin. Interestingly, LIS 1 interacted with two distinct sites on HC: one in the stem region containing the subunit-binding domain, and the other in the first AAA motif of the motor domain, which is indispensable for the ATPase function of the motor protein. This LIS1-dynein motor domain interaction suggests a role for LIS1 in regulating dynein motor activity. To test this hypothesis, changes of dynein ATPase activity was measured in the presence of LIS1 protein. The ATPase activity of dynein was stimulated by the addition of a recombinant LIS1 protein. Besides kinetochores, others and we have found LIS1 also localized at microtubule plus ends. LIS1 may mediate dynein and dynactin mitotic functions at these ends by interacting with astral microtubules at cortex, and associating with the spindle microtubules at kinetochores. Overexpression of LIS1 displaced dynein and dynactin from the microtubule plus ends, and mitotic progression was severely perturbed in LIS1 overexpressers. These results suggested that the role for LIS1 at microtubule plus ends is to regulate dynein and dynactin interactions with various subcellular structures. Results from my thesis research clearly favored the conclusion that LIS1 activates dynein ATPase activity through its interaction with the motor domain, and this activation is important to establish an interaction between dynein and microtubule plus ends during mitosis. I believe that my thesis work not only has provided ample implications regarding dynein dysfunction in disease formation, but also has laid a significant groundwork for more future studies in regulations of the increasing array of dynein functions.
6

Mitotic Roles for Cytoplasmic Dynein and Implications for Brain Developmental Disease: a Dissertation

Faulkner, Nicole E. 27 March 2001 (has links)
Cytoplasmic dynein has been implicated in a wide range of functions. Originally characterized as being responsible for retrograde axonal transport, its has also been shown to traffic vesicular organelles (Golgi, endosome and lysosome distribution), transport viral particles to the nucleus, and participate in microtubule organization. During mitosis, cytoplasmic dynein is thought to function in spindle pole focusing and prometaphase kinetochore capture. This thesis explores the mitotic roles of cytoplasmic dynein. The first chapter addresses the role of cytoplasmic dynein in kinetochore activity. Using immunofluoresence microscopy, a number of motors and related proteins were observed at the primary, but not secondary, constrictions of prometaphase multicentric chromosomes. The proteins assessed included the cytoplasmic dynein intermediate chains, three components of the dynactin complex (dynamitin, Arp1, and p150Glued), the kinesin related proteins CENP-E and MCAK, and the proposed structural and checkpoint proteins CENP-F, HZW10, and MAD2. The differential localization of these proteins offered new insight into the assembly and composition of both active and inactive centromeres, and provided a molecular basis for the apparent inactivity of the latter during chromosome segregation. The second chapter characterizes LIS1, a protein that is defective in the developmental brain disease type1 lissencephaly. Mutations in the LIS1 gene cause gross histological disorganization of the developing cerebral cortex resulting in a nearly smooth brain surface. Because genetic evidence from lower eukaryotes suggested that LIS1 acted within the cytoplasmic dynein pathway, it was of interest to analyze LIS1 in terms of cytoplasmic dynein function. LIS1 was found to coimmunoprecipitate with cytoplasmic dynein and its companion complex dynactin. During mitosis LIS1 localized to the prometaphase kinetochore, spindle microtubules and the cell cortex, known sites for cytoplasmic dynein binding. Interference with endogenous LIS1 in cultured mammalian cells displaced dynein localization and disrupted mitotic progression. LIS1 was concluded to participate in cytoplasmic dynein functions, but only during mitosis. Data presented in the final chapter further characterizes LIS1's interactions with microtubules, cytoplasmic dynein and the mammalian homologue of NUDC. LIS1 was not found to co-fractionate with microtubules, nor did overexpression of LIS1 cause visible effects on microtubule organization or dynamics. GFP-LIS1 was shown to ride along the plus ends of growing microtubules. Though LIS1 was not found to have a direct effect on microtubules, it may regulate dynein's microtubule binding activity. LIS1 was found to co-immunoprecipitate with a co-overexpressed cytoplasmic dynein subunit substantiating the existence of a dynein LIS1 supercomplex. Furthermore, association of these proteins increased markedly in mitotically blocked samples. LIS1's regulation of cytoplasmic dynein may change the capacity of the motor to efficiently manipulate its mitotic cargoes, dramatically effecting the timing of cell division. This disruption has implications for the fundamental role of cytoplasmic dynein during early embryonic development.
7

Cloning and Characterization of Dynamitin, the 50 kDa Subunit of Dynactin: A Study of Dynactin and Cytoplasmic Dynein Function in Vertebrates

Echeverri, Christophe de Jesus 30 January 1998 (has links)
Dynactin is a multi-subunit complex which was initially identified in 1991 as an activator of cytoplasmic dynein-driven microtubule-based organelle motility in vitro. Although genetic studies also supported the involvement of both complexes in the same functional pathways in yeast, filamentous fungi, and Drosophila, none of these findings yielded significant insights into dynactin's mechanism of action. The full range of cytoplasmic dynein functions in vertebrate cells has also remained poorly understood, due, in large part, to the lack of a specific method of inhibition. The present thesis work was designed to investigate these issues through a study of the 50 kDa subunit of dynactin. As a first step (Chapter 1), I cloned mammalian p50 and characterized its expression at the tissue and subcellular levels. Rat and human cDNA clones revealed p50 to be a novel α-helix-rich protein containing several highly-conserved structural features including one predicted coiled-coil domain. Immunofluorescence staining of p50, as well as other dynactin and cytoplasmic dynein components in cultured vertebrate cells showed that both complexes are recruited to kinetochores during prometaphase and concentrate near spindle poles thereafter. These findings represented the first evidence for dynactin and cytoplasmic dynein co-localization within cells, and for the presence of dynactin at kinetochores. The second major phase of the thesis (Chapter 2) was focused on investigating dynactin and cytoplasmic dynein function in cultured cells in vivo using a dominant negative inhibition approach based on transient transfections of p50 constructs. Overexpression of wild type human p50 in cultured cells resulted in a dramatic fragmentation and dispersal of the Golgi apparatus. Time-lapse fluorescence microscopy analysis of p50-overexpressing cells revealed that microtubule-based vesicle transport from the endoplasmic reticulum to the Golgi was inhibited. Also, the interphase microtubule organizing center was found to be less well-focused in some but not all transfected cells. Overexpression of p50 also disrupted mitosis, causing cells to accumulate in a prometaphase-like state. Chromosomes were condensed but unaligned, and spindles, while still generally bipolar, were dramatically distorted. Sedimentation analysis revealed the dynactin complex to be dissociated in the transfected cultures. Furthermore, both dynactin and cytoplasmic dynein staining at prometaphase kinetochores was markedly diminished in cells expressing high levels of p50. These findings provided the first in vivoevidence for the role of dynactin in cytoplasmic dynein function, i.e. mediating the motor's binding to at least one "cargo" organelle, the kinetochore, and probably also to others such as vesicles destined for the Golgi complex. These data also strongly implicated both dynactin and dynein in Golgi organization during interphase, and chromosome alignment and spindle organization during mitosis. Based on the remarkable disruptive phenotypic effects associated with overexpressing of p50, the name of dynamitin was proposed for this polypeptide. In the third and last phase of the thesis (Chapter 3), two issues were addressed: first, the dynamitin-induced mitotic arrest phenotype was studied in greater detail to better understand the exact sites of dynactin and cytoplasmic dynein activity throughout mitosis. Second, a domain analysis of dynamitin was performed to gain insight into its function within the dynactin complex. A time-lapse fluorescence microscopy study of mitosis in living dynamitin-overexpressing COS-7 cells strongly suggested specific defects in interactions of astral microtubules with the cell cortex, and in both spindle pole assembly and maintenance. Analysis of the mitotic arrest phenotype in a second cell line revealed a second arrest point at metaphase, and a clear effect of dynamitin overexpression on spindle axis orientation, again consistent with defects in interactions between microtubules and the cell cortex. Refined analyses of kinetochore and spindle pole components also confirmed specific defects in kinetochore function and spindle pole organization. Taken together, these findings support three main sites of dynactin and cytoplasmic dynein activity during vertebrate mitosis: prometaphase kinetochores, spindle poles, and the cell cortex. Finally, the domain analysis revealed dynamitin to be capable of self-association through at least two separate interaction domains, consistent with models of the mechanism underlying dynamitin-induced dynactin dissociation, and therefore, yielding important new insights into dynactin assembly. This study also indicated that a third region within dynamitin, residues 105 to 154, is essential for dynamitin and dynactin function. An independent study confirmed this finding, implicating this region in binding to ZW10, an upstream kinetochore protein. Dynamitin has therefore been revealed to be the kinetochore-targeting subunit of dynactin, and indirectly, cytoplasmic dynein. Through the body of this thesis work, dynamitin has also emerged as a powerful new tool for studying vertebrate dynactin and cytoplasmic dynein function in vivo and in vitro.
8

Identification and Characterization of Components of the Intraflagellar transport (IFT) Machinery: a Dissertation

Hou, Yuqing 11 May 2007 (has links)
Intraflagellar transport (IFT), the bi-directional movement of particles along the length of flagella, is required for flagellar assembly. The IFT particles are moved by kinesin II from the base to the tip of the flagellum, where flagellar assembly occurs. The IFT particles are then moved in the retrograde direction by cytoplasmic dynein 1b/2 to the base of the flagellum. The IFT particles of Chlamydomonas are composed of ~16 proteins, organized into complexes A and B. Alhough IFT is believed to transport cargoes into flagella, few cargoes have been identified and little is known about how the cargos are transported. To study the mechanism of IFT and how IFT is involved in flagellar assembly, this thesis focuses on two questions. 1) In addition to a heavy chain, DHC1b, and a light chain, LC8, what other proteins are responsible for the retrograde movement of IFT particles? 2) What is the specific function of an individual IFT-particle protein? To address these two questions, I screened for Chlamydomonas mutants either defective in retrograde IFT by immunofluorescence microscopy, or defective in IFT-particle proteins and D1bLIC, a dynein light intermediate chain possibly involved in retrograde IFT, by Southern blotting. I identified several mutants defective in retrograde IFT and one of them is defective in the D1bLIC gene. I also identified several mutants defective in several IFT-particle protein genes. I then focused on the mutant defective in D1bLIC and the one defective in IFT46, which was briefly reported as an IFT complex B protein. My results show that as a subunit of the retrograde IFT motor, D1bLIC is required for the stability of DHC1b and is involved in the attachment of IFT particles to the retrograde motor. The P-loop in D1bLIC is not necessary for the function of D1bLIC in retrograde IFT. My results also show that as a complex B protein, IFT46 is necessary for complex B stability and is required for the transport of outer dynein arms into flagella. IFT46 is phosphorylated in vivo and the phosphorylation is not critical for IFT46’s function in flagellar assembly.
9

<em>Chlamydomonas Reinhardtii ODA5</em> Encodes an Axonemal Protein Required for Assembly of the Outer Dynein Arm and an Associated Flagellar Adenylate Kinase: A Dissertation

Wirschell, Maureen 22 January 2004 (has links)
The first type of dynein identified, axonemel dynein (Gibbons and Rowe, 1965), slides adjacent microtubules within the axoneme, generating the force necessary for ciliary and flagellar beating. The outer dynein arm is an important component of the flagellar axoneme, providing up to 60% of the force for flagellar motility. In the absence of the outer arm, cells swim with a slow-jerky motion at about 1/3rd the speed of wild-type cells, and the flagellar beat frequency is markedly reduced. Sixteen genes (ODA1-ODA16) have been identified that are required for outer arm assembly in Chlamydomonas reinhardtii. In addition, PF13, PF22, and FLA14 are required for outer dynein arm assembly, but their phenotypes are pleiotropic, suggesting that they affect additional flagellar components. Of the uncloned genes, ODA5, ODA8, and ODA10 are of particular interest because they do not encode subunits of the outer arm or the outer dynein arm-docking complex (ODA-DC). Mutant alleles of these genes are unable to complement in temporary dikaryons, suggesting that the gene products interact with each other (Kamiya, 1988). Since the genes encoding all of the known components of the outer dynein arm and the ODA-DC have been characterized, it is of great interest to identify the gene products of these additional, uncloned ODA alleles. The first chapter provides an introduction to the Chlamydomonasflagellum, the dyneins in general, the outer dynein arm in particular, and mutations that impinge on the assembly and regulation of this important axonemal structure. The second chapter addresses the identification and isolation of genomic DNA containing the ODA5 gene. Utilizing a NIT1-tagged oda5-insertional mutant, I identified sequences flanking the site of the inserted NIT1 gene. These sequences were used to isolate wild-type genomic clones spanning the ODA5 gene. When transformed into the oda5 mutant, the wild-type clones rescued the mutant phenotype. These results demonstrated the successful isolation of the ODA5 gene. The third chapter describes the identification of the ODA5 gene and its corresponding cDNA. The rescuing genomic fragments were sequenced. Gene modeling was used to predict intron-exon splice sites. Primers to predicted exons were designed and used to obtain the ODA5 cDNA. The gene structure of Oda5 was analyzed and its predicted amino acid sequence deduced. Secondary structure predictions indicate that Oda5p is likely to contain a series of coiled-coil domains, followed by a poly-glycine sequence and a short, highly charged region. Northern analysis demonstrated that ODA5 gene expression is upregulated by deflagellation, a hallmark of many flagellar mRNAs. Data in CHAPTER IV further characterize the Oda5 protein and its association with the axoneme. Oda5p localizes to the flagellum, consistent with the enhancement in mRNA levels in response to deflagellation. Within the flagellum, Oda5p is an axonemal component that is released from the axoneme upon high salt extraction, as are the ODA-DC and the outer dynein arm. However, Oda5p does not associate with this super-complex in the high salt extract as determined by sucrose gradient sedimentation. Oda5p assembles onto the axoneme independently of the outer dynein arm and the ODA-DC,demonstrating it does not require these complexes for localization. Furthermore, Oda5p assembles onto the axoneme in the oda8, but not the oda10 mutant, demonstrating a role for the Oda10 protein in localization of Oda5p. These data provide the first biochemical evidence for an interaction between Oda5p and Oda10p. CHAPTER V reveals the discovery of a previously unrecognized phenotype exhibited in both oda5 and oda10 mutant strains: a defect in the assembly of a previously unknown flagellar adenylate kinase (AK). The protein levels of this flagellar AK are reduced in oda5 mutant axonemes, as determined by quantitative mass spectrometry. Direct enzymatic assays confirmed a reduction in AK activity in both oda5 and oda10 mutant axonemes, providing a second line of biochemical evidence supporting a complex containing Oda5p and OdalOp. The sequence of the flagellar AK gene and its cDNA were determined. CHAPTER VI details our efforts to identify the ODA10 gene. Genomic clones were isolated, which contain sequences at, or near, the ODA10 locus. Analysis of the genomic clones yielded no insights into the identity of the ODA10 gene. The inability of these clones to rescue the Oda10-motility phenotype indicates that these clones most likely do not contain an intact ODA10 gene. And lastly, CHAPTER VII discusses future experimentation that can be done based on the data provided by the current study.
10

Nuclear translocation in the Drosophila eye disc : an inside look at the role of misshapen and the endocytic-recycling traffic pathway

Houalla, Tarek. January 2007 (has links)
The main focus of my PhD studies was aimed at understanding the general mechanism of nuclear translocation and isolating novel components of the nuclear translocation pathway in neurons. Using the Drosophila visual system as an in vivo model to study nuclear motility in developing photoreceptor cells (R-cells), I have identified a novel role for the Ser/Thr kinase Misshapen (Msn) and the endocytic trafficking pathway in regulating the nuclear translocation process. / The development of R-cells in the Drosophila eye disc is an excellent model system for the study of nuclear motility owing to its monolayer organization and the stereotypical translocation of its differentiating R-cell nuclei along the apical-basal plane. Prior to my thesis work, several laboratories had identified dynein and its associating proteins in R-cell nuclear translocation, however nothing was known about the signalling pathway that controlled their function in nuclear migration. Thus, one of my thesis goals was to elucidate the signalling mechanism controlling nuclear translocation in R-cells. / Using a combination of molecular and genetic approaches, I identified Msn as a key component of a novel signalling pathway regulating R-cell nuclear translocation. Loss of msn causes a failure of R-cell nuclei to migrate apically. Msn appears to control R-cell nuclear translocation by regulating the localization of dynein and Bicaudal-D (Bic-D). My results also show that Msn enhances Bic-D phosphorylation in cultured cells, suggesting that Msn regulates R-cell nuclear migration by modulating the phosphorylation state of Bic-D. Consistently, my results show that a Bic-D-phosphorylation-defective mutation disrupted the apical localization of both Bic-D and dynein. I propose a model in which Msn induces the phosphorylation of Bic-D, which in turn modulates the activity and/or subcellular localization of dynein leading to the apical migration of R-cell nuclei. / In addition to studying Msn, I have also searched for additional players in R-cell nuclear migration. From a gain-of-function approach, I found that the misexpression of the GTPase-activating-protein (GAP) RN-Tre caused a severe defect in R-cell nuclear migration. Since mammalian RN-Tre is involved in negatively regulating Rab protein activity, I speculated that the RN-Tre misexpression phenotype reflected a role for Rab-mediated vesicular transport in regulating R-cell nuclear migration. I systematically examined the potential role of Rab family proteins in R-cell nuclear migration and found that interfering with the function of Rab5, Rab11 or Shibire caused a similar nuclear migration phenotype. I propose that an endocytic pathway involving these GTPases is required for the targeting of determinants to specific subcellular locations, which in turn drive the apical migration of R-cell nuclei during development.

Page generated in 0.0524 seconds