• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mise en évidence de l'implication de la voie GATOR1-mTORC1 dans les épilepsies et dysplasies corticales focales / Emphasizing the involvement of the GATOR1-mTORC1 pathway in focal cortical dysplasia and epilepsies

Marsan, Elise 25 September 2017 (has links)
Mon travail de thèse porte sur les épilepsies focales avec ou sans malformations cérébrales de type dysplasie corticale focale. Il s'articule autour de (1) une étude fonctionnelle et génétique sur tissu cérébral postopératoire humain et (2) la caractérisation d'un nouveau modèle génétique chez l'animal. Tout d'abord, des mutations germinales hétérozygotes perte de fonction ont été identifiées dans DEPDC5, NPRL2 et NPRL3 qui codent pour le complexe GATOR1, un inhibiteur du complexe 1 de mTOR (mTORC1). Par la suite, des mutations somatiques cérébrales gain de fonction ont été identifiées dans MTOR. Nous avons émis l'hypothèse que ces mutations entrainent une hyperactivité de mTORC1, responsable des malformations cérébrales et de l'épilepsie des patients. J'ai observé une hyperactivité de mTORC1 dans les cellules cytomégaliques obtenues à partir de tissu cérébral post-opératoire de patients porteurs de mutations dans les gènes de GATOR1 ou MTOR. En parallèle, la caractérisation du premier modèle KO de Depdc5 a montré que les rats Depdc5+/- présentent des anomalies corticales rappelant celles des patients : délamination des couches corticales et cellules cytomégaliques avec une hyperactivité de mTORC1. Ce phénotype est prévenu par l'injection de rapamycine, un inhibiteur spécifique de mTORC1. Une susceptibilité accrue aux crises épileptiques induites par le pentylènetétrazole ainsi qu'un défaut des propriétés neuronales passives et actives ont été rapportés chez les rats Depdc5+/-. En conclusion, mes travaux de thèse ont contribué à mettre en évidence l'implication de la voie GATOR1-mTORC1 dans les épilepsies et dysplasies corticales focales. / In my PhD thesis work, I investigated focal epilepsies with and without brain malformations such as focal cortical dysplasia. I focused on two complementary aspects: (1) genetics and functional studies on human tissue samples and (2) characterization of a novel genetic animal model. First, germline heterozygous loss-of-function mutations were identified in DEPDC5, NPRL2 and NPRL3 genes that encode proteins which together form the GATOR1 complex, a repressor of the mTOR complex 1 (mTORC1). Additionally, brain somatic gain-of- function mutations were identified in MTOR gene that encodes mTOR itself. Both types of mutations are thought to lead to mTORC1 hyperactivity, and cause brain malformation and epilepsy in patients. To test this hypothesis, mTORC1 activity was monitored on post-operative brain tissue from patients carrying GATOR1 or mTOR genes mutations. Cytomegalic cells with mTORC1 hyperactivity were observed. Besides, the characterization of the first Depdc5 KO model revealed that Depdc5+/- rats present cortical structural abnormalities reminiscent of patient histopathology hallmarks: cortical layer dyslamination and cytomegalic cells with increased mTORC1 activity. This phenotype was prevented by rapamycin injection, a specific mTORC1 inhibitor. An increased susceptibility to pentylenetetrazol-induced epileptic seizures, as well as impaired passive and active neuronal properties were observed in Depdc5+/- rats compared to Depdc5+/+ rats. In conclusion, my PhD work largely contributed to emphasize the prominent role of the GATOR1-mTORC1 pathway in focal cortical dysplasia and epilepsies.
2

Optimisation des techniques avancées en IRM cérébrale dans la détection des lésions développementales épileptogènes / Optimization of advanced MRI tools in the detection and characterization of epileptogenic developmental lesions

Mellerio, Charles 29 September 2014 (has links)
Les dysplasies corticales focales de type 2 (DCF2) sont une cause fréquente d’épilepsie partielle pharmacorésistante pouvant bénéficier d’un traitement chirurgical. Leur détection en IRM est un facteur indépendant de bon pronostic. Leur diagnostic reste difficile avec jusqu’à 40% d’IRM négatives. Le travail de cette thèse a pour principal objectif d’améliorer la détection des DCF2 à partir des séquences conventionnelles, d’évaluer la pertinence d’une augmentation de champ magnétique, et de valider de nouveaux outils de détection, en particulier par l’identification d’anomalies des sillons associées aux DCF2 de manière automatique puis visuelles. Cette étude a été réalisée à partir d’une des plus importante cohorte de patients (>80 patients) porteurs de DCF2 prouvée histologiquement. L’évaluation de la fréquence de chacun des signes en IRM nous a permis de démontrer que, bien qu’aucune anomalie ne soit visible dans 41% des cas, les différents signes chez les patients avec une IRM positive n’étaient jamais isolés et que la combinaison des 3 signes les plus évocateurs de DCF2 (épaississement cortical, flou de l'interface blanc-gris et « transmantle sign »), était retrouvée chez 27 patients (64%) suggérant que l’IRM puisse être un examen très caractéristique. En augmentant le champ magnétique de 1,5 à 3T en IRM le taux de détection n’est que peu modifié mais la caractérisation des DCF2 est améliorée en raison d’une meilleure visualisation du « transmantle sign », considéré comme une signature en IRM des DCF2. L’analyse automatisée des sillons basés sur le calcul d’un nouveau paramètre appelé « énergie sulcale » permet d’identifier des motifs sulcaux anormaux chez les patients porteurs de DCF2 dans la région centrale en comparaison aux sujets sains. Ce résultat souligne l'importance d’une étude des sillons et pourrait fournir un critère supplémentaire pour détecter et localiser la lésion chez des patients à IRM négative. Enfin, l’analyse visuelle des sillons par un reformatage 3D du cortex nous a permis de décrire un nouveau marqueur des DCF2 de la région centrale : un motif sulcal dénommé le "Power Button Sign". Compte tenu de son excellente reproductibilité et de sa spécificité, il pourrait être utilisé comme un nouveau critère diagnostic majeur de DCF2 de la région centrale. L’ensemble de ces résultat participe à la meilleure compréhension des phénomènes développementaux impliqués dans la physiopathologie des DCF2 et offre de nombreuses perspectives pour l’amélioration de leur détection en imagerie. / Focal cortical dysplasia type 2 (FCD2) is a common cause of intractable partial epilepsy surgically treatable. Their detection by MRI is an independent factor of good prognosis. The MR imaging diagnosis remains difficult with up to 40% negative MRI. Our main objective is to improve the detection of FCD2from conventional sequences, to assess the relevance of increased magnetic field and validate new tools for detection, in particular by identifying sulcal abnormalities associated with FCD2 automatically and visually. This study was carried out from one of the largest cohort of patients (> 80 patients) with histologically proven FCD2. The evaluation of the frequency of each MR signs showed that, although no abnormality is seen in 41% of cases, the different signs in patients with a positive MRI were never isolated and the combination of the 3 most suggestive signs of FCD2 (cortical thickening, bluring of the gray-white matter interface and "transmantle sign") was found in 27 patients (64%), indicating that MRI can be very suggestive. By increasing the magnetic field from 1.5 to 3T MRI detection rate is only slightly changed but characterization of FCD2 is improved thanks to a better visualization of the " transmantle sign " considered as a MR signature of FCD2. The automated sulcus analysis based on the calculation of a new parameter called "sulcal energy" identifies abnormal sulcal patterns in patients with FCD2 in the central region in comparison to healthy subjects. This result underlines the importance of the identification of sulci and could provide an additional criterion for detecting and locating the lesion in patients with negative MRI. Finally, the visual analysis of sulci by 3D reformatting of the cortex allowed us to describe a new MR sign of FCD2 in the central region: a sulcal pattern called the "Power Button Sign". Given its excellent reproducibility and specificity, it could be used as a new major diagnostic criterion of FCD2 in the central region. All these results contribute to the better understanding of the developmental processes involved in the pathophysiology of FCD2 and offers many opportunities for improving their MR detection.
3

Dysplasies corticales focales de l'enfant : localisation par l'imagerie de perfusion in vivo et caractérisation électrophysiologique des activités épileptiques in vitro / Focal cortical dysplasia in children : in vivo localization with perfusion imaging, and in vitro characterization of epileptic activities

Blauwblomme, Thomas 04 April 2017 (has links)
Les dysplasies corticales (FCD) sont une cause fréquente d’épilepsie lésionnelle requérant un traitement chirurgical, caractérisées par l’association de troubles de l’architecture corticale et la présence de cellules neuronales et/ou gliales anormales Les FCD restent parfois difficiles à identifier / localiser et la physiopathologie des activités épileptiques qu’elles produisent reste mal connue. L’objectif de ce travail est d’optimiser la localisation anatomique et fonctionnelle des FCD chez l’enfant et d’étudier leur épileptogénicité par une double approche, in vivo en imagerie de perfusion IRM-ASL (Arterial Spin Labeling), et in vitro par enregistrements de tissus humains post-opératoires sur matrice de micro électrodes. L’intérêt de l’étude de ces dysplasies chez l’enfant est majeure à un âge où la récurrence des crises n’a pas encore modifié le réseau … Tout d’abord, nous avons montré une hypoperfusion focale des dysplasies corticales focales de type II colocalisée à l’hypo métabolisme en 18FDG-PET scan et au défect histologique. Nous avons développé une méthode d’analyse statistique du signal ASL permettant l’intégration des données objectives de l’imagerie dans une approche multimodale des anomalies interictales associant ASL et IRM fonctionnelle-EEG. Ensuite, nous avons exploré in vitro des tranches de cortex humain dysplasique post-opératoire. La présence d’activités épileptiques interictales spontanées témoignait de la persistance des caractéristiques épileptogéniques des FCD, variables selon les sous types histologiques. L’étude de la signalisation GABAergique et de la régulation du chlore a montré que le co transporteur du chlore NKCC1 chargeait excessivement les neurones en chlore alors que son concurrent KCC2, extrudant normalement ces anions, était down-régulé. La dérégulation neuronale du chlore qui en résulte est à l’origine d’effets paradoxalement dépolarisants du GABA, rendant compte non pas d’une perte d’inhibition GABAergique mais de son implication active dans les processus épileptiques. Enfin, nous avons contribué à mettre en évidence le rôle des hémicanaux Pannexines1, et de la transmission purinergique dans l’initiation et la maintenance des activités ictales, ouvrant une nouvelle piste thérapeutique chez les patients présentant ces épilepsies pharmaco résistantes. / Focal cortical Dysplasias (FCD) are a frequent etiology of lesional epilepsy, requiring surgical treatment. They are defined by abnormalities of cortical architecture intermixed with the presence of abnormal neuronal or glial cells. Imaging FCD remains challenging, both to detect and map the lesion, and the pathophysiology of the epileptic discharges they produce is incompletely understood. The aim of this PhD is to improve in vivo FCD mapping in children with perfusion MRI, and to study in vitro their epileptogenicity with human postoperative cortical slices electrophysiological recordings on micro electrode arrays. First, we showed with ASL MRI (Arterial Spin Labeling) a focal hypoperfusion in type II FCD, colocalized with 18FDG-PET hypo metabolism and histological defects. We developed a statistical analysis of ASL under SPM integrated in a multimodal approach of FCD with EEG-fMRI and ASL-MRI. Second, we studied in vitro slices of human postoperative dysplastic cortex. We could record reliable spontaneous inter ictal discharges, specific of the histological subtype, showing that tissues retain epileptogenic features. We focused our study on GABAergic signaling and neuronal chloride regulation. We have identified an excessive chloride load in neurons by the co transporter NKCC1 whereas chloride extrusion was deficient because of KCC2 down regulation. The consequent chloride dysregulation resulted in paradoxical GABAergic depolarization, responsible for a loss of inhibitory processes but also a shift to excitatory effects of GABAergic signals. Third, we also contributed to a study on Pannexin hemichannels, revealing that Pannexin1 channels sustain initiation and maintenance of ictal activity though purinergic neurotransmission in human cortical slices, supporting new anti epileptic targets in human pharmaco resistant epilepsies.
4

Role of the cotransporter KCC2 in cortical excitatory synapse development and febrile seizure susceptibility

Awad, Patricia Nora 08 1900 (has links)
Le co-transporteur KCC2 spécifique au potassium et chlore a pour rôle principal de réduire la concentration intracellulaire de chlore, entraînant l’hyperpolarisation des courants GABAergic l’autorisant ainsi à devenir inhibiteur dans le cerveau mature. De plus, il est aussi impliqué dans le développement des synapses excitatrices, nommées aussi les épines dendritiques. Le but de notre projet est d’étudier l’effet des modifications concernant l'expression et la fonction de KCC2 dans le cortex du cerveau en développement dans un contexte de convulsions précoces. Les convulsions fébriles affectent environ 5% des enfants, et ce dès la première année de vie. Les enfants atteints de convulsions fébriles prolongées et atypiques sont plus susceptibles à développer l’épilepsie. De plus, la présence d’une malformation cérébrale prédispose au développement de convulsions fébriles atypiques, et d’épilepsie du lobe temporal. Ceci suggère que ces pathologies néonatales peuvent altérer le développement des circuits neuronaux irréversiblement. Cependant, les mécanismes qui sous-tendent ces effets ne sont pas encore compris. Nous avons pour but de comprendre l'impact des altérations de KCC2 sur la survenue des convulsions et dans la formation des épines dendritiques. Nous avons étudié KCC2 dans un modèle animal de convulsions précédemment validé, qui combine une lésion corticale à P1 (premier jour de vie postnatale), suivie d'une convulsion induite par hyperthermie à P10 (nommés rats LHS). À la suite de ces insultes, 86% des rats mâles LHS développent l’épilepsie à l’âge adulte, au même titre que des troubles d’apprentissage. À P20, ces animaux presentent une augmentation de l'expression de KCC2 associée à une hyperpolarisation du potentiel de réversion de GABA. De plus, nous avons observé des réductions dans la taille des épines dendritiques et l'amplitude des courants post-synaptiques excitateurs miniatures, ainsi qu’un déficit de mémoire spatial, et ce avant le développement des convulsions spontanées. Dans le but de rétablir les déficits observés chez les rats LHS, nous avons alors réalisé un knock-down de KCC2 par shARN spécifique par électroporation in utero. Nos résultats ont montré une diminution de la susceptibilité aux convulsions due à la lésion corticale, ainsi qu'une restauration de la taille des épines. Ainsi, l’augmentation de KCC2 à la suite d'une convulsion précoce, augmente la susceptibilité aux convulsions modifiant la morphologie des épines dendritiques, probable facteur contribuant à l’atrophie de l’hippocampe et l’occurrence des déficits cognitifs. Le deuxième objectif a été d'inspecter l’effet de la surexpression précoce de KCC2 dans le développement des épines dendritiques de l’hippocampe. Nous avons ainsi surexprimé KCC2 aussi bien in vitro dans des cultures organotypiques d’hippocampe, qu' in vivo par électroporation in utero. À l'inverse des résultats publiés dans le cortex, nous avons observé une diminution de la densité d’épines dendritiques et une augmentation de la taille des épines. Afin de confirmer la spécificité du rôle de KCC2 face à la région néocorticale étudiée, nous avons surexprimé KCC2 dans le cortex par électroporation in utero. Cette manipulation a eu pour conséquences d’augmenter la densité et la longueur des épines synaptiques de l’arbre dendritique des cellules glutamatergiques. En conséquent, ces résultats ont démontré pour la première fois, que les modifications de l’expression de KCC2 sont spécifiques à la région affectée. Ceci souligne les obstacles auxquels nous faisons face dans le développement de thérapie adéquat pour l’épilepsie ayant pour but de moduler l’expression de KCC2 de façon spécifique. / The potassium-chloride cotransporter KCC2 decreases intracellular Cl- levels and renders GABA responses inhibitory. In addition, it has also been shown to modulate excitatory synapse development. In this project, we investigated how alterations of KCC2 expression levels affect these two key processes in cortical structures of a normal and/or epileptic developing brain. First, we demonstrate that KCC2 expression is altered by early-life febrile status epilepticus. Febrile seizures affect about 5% of children during the first year of life. Atypical febrile seizures, particularly febrile status epilepticus, correlate with a higher risk of developing cognitive deficits and temporal lobe epilepsy as adults, suggesting that they may permanently change the developmental trajectory of neuronal circuits. In fact, the presence of a cerebral malformation predisposes to the development of atypical febrile seizures and temporal lobe epilepsy. The mechanisms underlying these effects are not clear. Here, we investigated the functional impact of this alteration on subsequent synapse formation and seizure susceptibility. We analyzed KCC2 expression and spine density in the hippocampus of a well-established rodent model of atypical febrile seizures, combining a cortical freeze lesion at post-natal day 1 (P1) and hyperthermia-induced seizure at P10 (LHS rats). 86% of these LHS males develop epilepsy and learning and memory deficits in adulthood. At P20, we found a precocious increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA (EGABA) by gramicidin-perforated patch. In parallel, we observed a reduction in dendritic spine size by DiI labelling and a reduction of miniature excitatory postsynaptic current (mEPSC) amplitude in CA1 pyramidal neurons, as well as impaired spatial memory. To investigate whether the premature expression of KCC2 played a role in these alterations in the LHS model, and on seizure susceptibility, we reduced KCC2 expression in CA1 pyramidal neurons by in utero electroporation of shRNA using a triple-probe electrode. This approach lead to reduced febrile seizure susceptibility, and rescued spine size shrinkage in LHS rats. Our results show that an increase of KCC2 levels induced by early-life insults affect seizure susceptibility and spine development and may be a contributing factor to the occurrence of hippocampal atrophy and associated cognitive deficits in LHS rats. Second, we investigated whether KCC2 premature overexpression plays a role in spine alterations in the hippocampus. We overexpressed KCC2 in hippocampal organotypic cultures by biolistic transfection and in vivo by in utero electroporation. In contrast to what was previously published, we observed that both manipulations lead to a decrease in spine density in the hippocampus, as well as an increase in spine head size in vivo. In fact, it has been previously shown that overexpressing KCC2 leads to an increase of spine density in the cortex in vivo. To prove that this discrepancy is due to brain regional differences, we overexpressed KCC2 in the cortex by in utero electroporation, and similarly found an increase in spine density and length. Altogether, our results demonstrate for the first time, that alterations of KCC2 expression are brain circuit-specific. These findings highlights the obstacles we will face to find adequate pharmacological treatment to specifically modulate KCC2 in a region-specific and time-sensitive manner in epilepsy.
5

Crosstalk between the immune and nervous systems : how early-life activation of toll-like receptors can alter hippocampal neuronal excitability and predisposition to seizures in rodents

Shaker, Tarek 12 1900 (has links)
Les récepteurs de type Toll (TLR) sont des récepteurs cellulaires jouant un rôle pivot dans le déclenchement de la réponse immunitaire après une infection ou une blessure, c'est-à-dire une inflammation. L'activation de la signalisation TLR a été associée à l’épilepsie. Dans ce projet, j'utilisai trois modèles distincts pour étudier comment le déclenchement des TLR contribue à l'épileptogenèse. Il existe une corrélation entre les malformations corticales développementales telle la dysplasie corticale focale (FCD) et convulsions fébriles dans les enfants de bas âge. Récemment, une réponse neuro-inflammatoire fut identifiée dans les lésions FCD. Nous postulâmes que l'inflammation induite par le FCD peut augmenter la sensibilité aux crises (chapitre 2). Nous modélisâmes FCD en induisant une congélation-lésion corticale chez le rat néonatal. La lésion corticale déclencha des effecteurs en aval de TLR4, spécifiquement le précurseur de la cytokine Caspase-1, dans l'hippocampe ipsilatéral à la lésion. Les rats lésés développèrent des crises fébriles expérimentales nettement plus rapidement que les rats témoins. Le blocage de l'activité de la Caspase-1 prolongea significativement la latence des crises chez les rats lésés. Nos résultats impliquent l'inflammation médiée par la Caspase-1 en tant que déclencheur des crises fébriles chez les enfants avec FCD préexistante. Des études antérieures déterminèrent que l'activation systémique de la cascade TLR4 abaisse le seuil de crise. Nous étudiâmes si la pénétration des cellules immunitaires périphériques dans le cerveau pendant la stimulation TLR4 favorise l'activité ictal en stimulant la voie TLR4 dans les leucocytes prélevés sur la rate de rat (splénocytes). Ensuite, nous co-cultivâmes des splénocytes avec des coupes organotypiques dérivées du cerveau in vitro (chapitre 3). L'ajout de splénocytes stimulés par TLR4 donna lieu à une neuro-inflammation et à une excitation neuronale accrue. L’ajout de splénocytes non-stimulés n’eut aucun effet pro-inflammatoire ou pro-excitateur dans les coupes organotypiques. De plus, l'inhibition de la Caspase-1 dans des coupes organotypiques co-cultivées avec des splénocytes stimulés diminua la neuro-inflammation et l'hyperexcitabilité neuronale. Nos résultats suggèrent que l'infiltration de leucocytes activés par TLR4 dans le cerveau augmente la prédisposition aux crises via les mécanismes médiés par la Caspase-1. Précédemment, des rapports montrèrent que l'activation de la signalisation TLR3 facilite l'évolution des crises. L'introduction d'un agoniste synthétique TLR3 chez la souris in vivo et des coupes organotypiques hippocampiques in vitro produisirent des mécanismes anti-inflammatoires dépendants de la dose et du temps (chapitre 4). La stimulation TLR3 supprimait les crises d'hippocampe in vivo et réduisait l'excitabilité synaptique dans le réseau hippocampique à la fois in vivo et in vitro. Nous avons déterminé que les effets anticonvulsivants médiés par TLR3 étaient principalement provoqués par les cascades en aval IRF3 / IFN-β. Ainsi, nos données suggèrent que l'activation de TLR3 peut protéger le cerveau contre les crises par la production d'IFN-β. Nos résultats donnent un aperçu des nouveaux mécanismes cellulaires sous-jacents à la modulation inflammatoire de l'excitabilité neurale. Notre découverte des rôles de la Caspase-1 et de l'IFN-β dans l'influence du seuil de crise améliorera notre compréhension des fondements moléculaires de la génération de crises ce qui pourraient améliorer le traitement de l'épilepsie. / Toll-like receptors (TLRs) are cellular receptors that play a pivotal role in initiating immune response following infection or injury, i.e. inflammation. Nevertheless, activation of TLR signaling has been associated with seizure manifestation. In this research, I employed three distinct models to study how triggering TLRs contributes to ictogenesis. There is a correlation between developmental cortical malformations, e.g. focal cortical dysplasia (FCD), and fever-provoked, i.e. febrile, seizures in young children. Recently, neuroinflammation was reported in FCD lesions. Therefore, we posited that FCD-induced inflammation may increase seizure susceptibility (Chapter 2). To recapitulate FCD pathology, we induced a cortical freeze-lesion in neonatal rats. Lesioning the cortex triggered TLR4 downstream effectors, specifically the cytokine precursor Caspase-1, in the hippocampus ipsilateral to the lesion. Further, lesioned rats developed experimental febrile seizures markedly faster than sham control rats. Strikingly, blocking Caspase-1 activity prior to seizure induction significantly prolonged seizure latency in lesioned rats. Our results implicate Caspase-1-mediated inflammation as a main driver of febrile seizures in children with pre-existing brain malformations. In addition, previous reports determined that systemic activation of TLR4 cascade lowers seizure threshold. Hence, we developed an in vitro model to investigate whether penetration of peripheral immune cells into the brain during TLR4 stimulation promotes ictogenic activity (Chapter 3). First, we stimulated TLR4 pathway in leukocytes harvested from rat spleen, i.e. splenocytes. Thereafter, we co-cultured splenocytes with brain-derived organotypic slices in vitro. Adding TLR4-stimulated splenocytes gave rise to neuroinflammation and enhanced neuronal excitation, whereas adding unstimulated splenocytes failed to evoke pro-inflammatory or proexcitatory effects in organotypic slices. Moreover, Caspase-1 inhibition in organotypic slices cocultured with stimulated splenocytes diminished neuroinflammation and neuronal hyperexcitability. Our findings suggest that infiltration of TLR4-activated leukocytes into the brain elevate seizure predisposition via Caspase-1-mediated mechanisms. Beside TLR4 pathway, it was previously shown that activation of TLR3 signaling facilitates seizure evolution. In chapter 4, introducing a synthetic TLR3 agonist to mice in vivo and to hippocampal organotypic slices in vitro yielded anti-inflammatory mechanisms in a dose- and time-dependent manner. Also, we found that TLR3 stimulation suppressed hippocampal seizures in vivo and reduced synaptic excitability in the hippocampal network both in vivo and in vitro. Finally, we determined that TLR3-mediated anticonvulsive effects were chiefly driven by IRF3/IFN-β downstream cascades. Thus, our data suggests that TLR3 activation may protect the brain from seizures through production of IFN-β. Altogether, our findings provide insight into novel cellular mechanisms underlying inflammatory modulation of neural excitability. Furthermore, our discovery of the roles of Caspase-1 and IFN-β in influencing seizure threshold will improve our understanding of the molecular underpinnings of seizure generation, which may ultimately have therapeutic benefits for epilepsy treatment.

Page generated in 0.1036 seconds