• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 13
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 122
  • 122
  • 78
  • 30
  • 21
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Fabrication of Nanostructures by Low Voltage Electron Beam Lithography

Adeyenuwo, Adegboyega P. Unknown Date
No description available.
62

Feedback Control for Electron Beam Lithography

Yang, Yugu 01 January 2012 (has links)
Scanning-electron-beam lithography (SEBL) is the primary technology to generate arbitrary features at the nano-scale. However, pattern placement accuracy still remains poor compared to its resolution due to the open-loop nature of SEBL systems. Vibration, stray electromagnetic fields, deflection distortion and hysteresis, substrate charging, and other factors prevent the electron-beam from reaching its target position and one has no way to determine the actual beam position during patterning with conventional systems. To improve the pattern placement accuracy, spatial-phase-locked electron-beam lithography (SPLEBL) provides feedback control of electron-beam position by monitoring the secondary electron signal from electron-transparent fiducial grids on the substrate. While scanning the electron beam over the fiducial grids, the phase of the grid signal is analyzed to estimate the electron-beam position error; then the estimates are sent back to beam deflection system to correct the position error. In this way, closed-loop control is provided to ensure pattern placement accuracy. The implementation of spatial-phase-locking on high speed field-programmable gate array (FPGA) provides a low-cost method to create a nano-manufacturing platform with 1 nm precision and significantly improved throughput. Shot-to-shot, or pixel-to-pixel, dose variation during EBL is a significant practical and fundamental problem. Dose variations associated with charging, electron source instability, optical system drift, and ultimately shot noise in the beam itself conspire to increase critical dimension variability and line width roughness and to limit the throughput. It would be an important improvement to e-beam patterning technology if real-time feedback control of electron-dose were provided to improve pattern quality and throughput even beyond the shot noise limit. A novel approach is proposed in this document to achieve the real-time dose control based on the measurement of electron arrival at the sample to be patterned, rather than from the source or another point in the electron-optical system. A dose control algorithm, implementation on FPGA, and initial experiment results for the real-time feedback dose control on the e-beam patterning tool is also presented.
63

High-Throughput Electron-Beam Lithography with Multiple Plasmonic Enhanced Photemission Beamlets

Zhidong Du (5929652) 21 December 2018 (has links)
Nanoscale lithography is the key component of the semiconductor device fabrication process. For the sub-10 nm node device, the conventional deep ultraviolet (DUV) photolithography approach is limited by the diffraction nature of light even with the help of double or multiple patterning. The upcoming extreme ultraviolet (EUV) photolithography can overcome this resolution limit by using very short wavelength (13.5nm) light. Because of the prohibitive cost of the tool and the photomask, the EUV lithography is only suitable for high volume manufacturing of high value. Several alternative lithography technologies are proposed to address the cost issue of EUV such as directed self-assembly (DSA), nanoimprint lithography (NIL), scanning probe lithography, maskless plasmonic photolithography, optical maskless lithography, multiple electron-beam lithography, etc.<div><br></div><div>Electron-beam lithography (EBL) utilizes a focused electron beam to write patterns dot by dot on the silicon wafer. The beam size can be sub-nanometers and the resolution is limited by the resist not the beam size. However, the major drawback of EBL is its low throughput. The throughput can be increased by using large current but at the cost of large beam size. This is because the interaction between electrons in the pathway of the electron beam. To address the trade-off between resolution and throughput of EBL, the multiple electron-beam lithography was proposed to use an array of electron-beams. Each beam has a not very large beam current to maintain good resolution but the total current can be very high to improve the throughput. One of the major challenges is how to create a uniform array of electron beamlets with large brightness.<br></div><div><br></div><div>This dissertation shows a novel low-cost high-throughput multiple electron-beam lithography approach that uses plasmonic enhanced photoemission beamlets as the electron beam source. This technology uses a novel device to excite and focus surface electromagnetic and electron waves to generate millions of parallel electron beamlets from photoemission. The device consists of an array of plasmonic lenses which generate electrons and electrostatic micro-lenses which guide the electrons and focus them into beams. Each of the electron beamlets can be independently controlled. During lithography, a fast spatial optical modulator will dynamically project light onto the plasmonic lenses individually to control the switching and brightness of electron beamlets without the need of a complicated beamlet-blanking array and addressable circuits. The incident photons are first converted into surface electromagnetic and electron waves by plasmonic lens and then concentrated into a diffraction-unlimited spot to excite the local electrons above their vacuum levels. Meanwhile, the electrostatic micro-lens will extract the excited electrons to form a finely focused beamlet, which can be rastered across a wafer to perform lithography. The scalable plasmonic enhanced photoemission electron-beam sources are designed and fabricated. An array of micro-scale electrostatic electron lenses are designed and fabricated using typical micro-electro-mechanical system (MEMS) fabrication method. The working distance (WD) defined as the gap from the electron lens to the underneath silicon wafer is regulated using a gap control system. A vacuum system is designed and constructed to host the multiple electron-beam system. Using this demo system, the resolution of the electron beams is confirmed to be better than 30 nm from the lithography results done on poly methyl methacrylate (PMMA) and hydrogen silsesquioxane (HSQ) resists. According to simulation results, the electron beam spot size can be further optimized to be better than 10 nm.<br></div><div><br></div><div>This scheme of high-throughput electron-beam lithography with multiple plasmonic enhanced photoemission beamlets has the potential to be an alternative approach for the sub-10 nm node lithography. Because of its maskless nature, it is cost effective and especially suitable for low volume manufacturing and prototype demonstration.<br></div><div><br></div><div><br></div>
64

Fabrication and Applications of a Focused Ion Beam Based Nanocontact Platform for Electrical Characterization of Molecules and Particles

Blom, Tobias January 2010 (has links)
The development of new materials with novel properties plays an important role in improving our lives and welfare. Research in Nanotechnology can provide e.g. cheaper and smarter materials in applications such as energy storage and sensors. In order for this development to proceed, we need to be able to characterize the material properties at the nano-, and even the atomic scale. The ultimate goal is to be able to tailor them according to our needs. One of the great challenges concerning the characterization of nano-sized objects is how to achieve the physical contact to them. This thesis is focused on the contacting of nanoobjects with the aim of electrically characterizing them and subsequently understanding their electrical properties. The analyzed nanoobjects are carbon nanosheets, nanotetrapods, nanoparticles and molecular systems. Two contacting strategies were employed in this thesis. The first strategy involved the development of a focused ion beam (FIB) based nanocontact platform. The platform consists of gold nanoelectrodes, having nanogaps of 10-30 nm, on top of an insulating substrate. Gold nanoparticles, double-stranded DNA and cadmium telluride nanotetrapods have been trapped in the gaps by using dielectrophoresis. In certain studies, the gold electrodes have also been coated with conducting or non-conducting molecules, prior to the trapping of gold nanoparticles, in order to form molecular junctions. These junctions were subsequently electrically characterized to evaluate the conduction properties of these molecular systems. For the purpose of better controlling the attachment of molecules to the nanoelectrodes, a novel route to synthesize alkanedithiol coated gold nanoparticles was developed. The second contacting strategy was based on the versatility of the FIB instrument as a platform for in-situ manipulation and electrical characterization of non-functionalized and functionalized carbon nanosheets, where it was found that the functionalized samples had an increased conductivity by more than one order of magnitude. Both contacting strategies proved to be valuable for building knowledge around contacting and electrical characterization of nanoobjects
65

Lateral resolution in laser induced forward transfer

Wang, Qing Unknown Date
No description available.
66

Lateral resolution in laser induced forward transfer

Wang, Qing 11 1900 (has links)
In this thesis the lateral resolution limits of the Laser Induced Forward Transfer (LIFT) technique are being investigated. LIFT is a laser direct write process with micron and below resolution and is suitable for modifying, repairing and prototyping micro-devices. Single laser pulses with wavelength of 800 nm and duration of 130 fs from a Ti:Sapphire laser system were focused onto a transparent donor substrate coated with thin film to transfer the thin film material in the form of micro-disks through a small air gap onto an acceptor substrate. In this thesis, donor glass substrate coated with 80nm continuous Cr film and also Cr disks array patterned by photolithography or e-beam lithography were used as targets. The ablation threshold and transfer threshold were determined experimentally and compared to results from two-temperature model (TTM) simulations and reasonably agreement was obtained. For the continuous film target, the size of the LIFT disks depend on the laser fluences and the smallest sizes of around 700 nm were obtained near the transfer threshold. For the pre-patterned disks array targets, initially 1.3m Cr disks were fabricated on the donor substrates by photolithography. Small focused, larger defocused and large top-hat laser beams were used to transfer the pre-patterned Cr disks. The morphology of the transferred material and reliability of transfer were studied. It was found that the large top-hat beam gave the most reliable and high quality transfer results, resulting in mostly intact LIFT disks on the acceptor substrate. To push the resolution limit further, 500nm Cr disks fabricated on the donor substrate by e-beam lithography were used. The successful transfer of these 500 nm Cr disks gives a positive indication that LIFT can potentially be extended further to the nano-scale regime (usually defined as having sub-100 nm resolution).
67

High-Resolution Nanostructuring for Soft X-Ray Zone-Plate Optics

Reinspach, Julia January 2011 (has links)
Diffractive zone-plate lenses are widely used as optics in high-resolution x-ray microscopes. The achievable resolution in such microscopes is presently not limited by the x-ray wavelength but by limitations in zone-plate nanofabrication. Thus, for the advance of high-resolution x-ray microscopy, progress in zone-plate nanofabrication methods are needed.   This Thesis describes the development of new nanofabrication processes for improved x-ray zone-plate optics. Cold development of the electron-beam resist ZEP7000 is applied to improve the resolution of soft x-ray Ni zone plates. The influence of developer temperature on resist contrast, resolution, and pattern quality is investigated. With an optimized process, Ni zone plates with outermost zone widths down to 13 nm are demonstrated. To enhance the diffraction efficiency of Ni zone plates, the concept of Ni-Ge zone plates is introduced. The applicability of Ni-Ge zone plates is first demonstrated in a proof-of-principle experiment, and then extended to cold-developed Ni zone plates with outermost zone widths down to 13 nm. For 15-nm Ni-Ge zone plates a diffraction efficiency of 4.3% at a wavelength of 2.88 nm is achieved, which is about twice the efficiency of state-of-the-art 15-nm Ni zone plates. To further increase both resolution and diffraction efficiency of soft x-ray zone plates, a novel fabrication process for W zone plates is developed. High resolution is provided by salty development of the inorganic electron-beam resist HSQ, and cryogenic RIE in a SF6 plasma is investigated for high-aspect-ratio W structuring. We demonstrate W zone plates with 12-nm outermost zone width and a W height of 90 nm, resulting in a 30% increase in theoretical diffraction efficiency compared to 13-nm efficiency-enhanced Ni-Ge zone plates. In addition to soft x-ray zone plates, some lenses for hard x-ray free-electron-laser applications were also fabricated during this Thesis work. Fabrication processes for the materials W, diamond, and Pt were developed. We demonstrate Pt and W-diamond zone plates with 100-nm outermost zone width and respective diffraction efficiencies of 8.2% and 14.5% at a photon energy of 8 keV. / QC 20111114
68

Příprava a charakterizace nanostruktur s funkčními vlastnostmi v oblasti plazmoniky / Fabrication and characterization of nanostructures with functional properties in the field of plasmonics

Babocký, Jiří January 2020 (has links)
Tato dizertční práce se zabývá výrbou a charakterizací plasmonických nanostruktur. Její první část začíná krátkým úvodem do plasmoniky s navazujícím přehledem metod, které jsou v dnešní době nejčastěji používány k výrobě a charakterizaci plasmonických nanostruktur. Druhá část se pak zaměřuje na samotný výzkum, který byl v rámci PhD studia realizován. Cílem prvních experimentů bylo prozkouat možnosti použití elektronové litografie za variabilního tlaku v procesní komoře pro výrobu plasmonických nanostruktur na nevodivých substrátech jako je např. sklo. Jelikož se jedná o materiály, které jsou velice často používány k přípravě plasmonických struktur pacujících v oblasti viditelného světla. Druhá sekce pak diskutuje některé specifické aspekty přípravy plasmonických mikrostruktur elektronovou litografií pro THz oblast. Poslední část se pak zaměřuje na funkční vlastnosti plasmonických nanostruktur, převážně pak na kvantitativní charakterizaci fáze dalekého pole indukovaného plasmonickými nanostrukturami a jejich aplikacemi v oblasti optických metapovrchů - uměle připravených povrchů, které mohou být použity jako planární optické komponenty. Práce demonstruje a diskutuje různé experimentální přístupy použití mimoosové holografické mikroskopie pro jejich charakterizaci.
69

Vyhodnocení vlastností fotovoltaických článků s optickými koncentrátory / Evaluation of photovoltaic cells with optical concentrators

Pončík, Vlastimil January 2011 (has links)
This work deals about the photovoltaic systems, especially with concentration of the sunlight in use of concentrators that are placed direct on the panel. Concentrated photovoltaics systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of more efficient electrical power production. A photovoltaic cell with concentrator includes difractive optical elements that concentrate light on a photovoltaic chip Flat polycarbonate optical element has difractive gratings on its surface.
70

Vodíkem modifikované grafenové struktury pro polem řízené tranzistory / The hydrogen modification of the graphene structures for field effect transistors

Kurfürstová, Markéta January 2016 (has links)
This master’s thesis is focused on the subject of graphene modified with atomic hydrogen and its electronic transport properties. Structural and electronic properties of graphene and hydrogenated graphene are compared in the theoretical part of the thesis. The Raman spectroscopy technique is described, including characterization of typical Raman spectra of both unmodified and modified graphene. Samples used during experimental part of the thesis are prepared via laser and electron lithography, and are set to be measured in a vacuum chamber. Subsequently, electronic transport properties are measured before and after hydrogen modification of graphene. Finally, hydrogenated graphene is irradiated using electron beam and changes in its structure are analyzed with Raman spectroscopy techniques.

Page generated in 0.0455 seconds