• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 444
  • 192
  • 69
  • 35
  • 18
  • 14
  • 14
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 6
  • 5
  • Tagged with
  • 1109
  • 234
  • 201
  • 167
  • 165
  • 157
  • 140
  • 120
  • 104
  • 103
  • 100
  • 98
  • 89
  • 88
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Longitudinal Analysis of Public Response to Wildland Fire and Fuel Management: Examining Citizen Responses and Fire Management Decisions from 2002-2008

Bennett, James Benjamin 02 November 2010 (has links)
No description available.
412

A Computer Simulation of the Operations of a Spent Nuclear Fuel Receiving and Storage Station

Barnard, Jeanna Lorene 01 July 1980 (has links) (PDF)
Spent nuclear fuel is received at a storage facility in heavily shielded casks transported by either rail or by truck. Once at the storage facility, the casks are inspected, emptied, decontaminated, and reshipped. Allied-General Nuclear Services' (AGNS) nuclear fuel reprocessing plant in Barnwell, South Carolina, is constructed but not yet licensed for spent nuclear fuel storage or reprocessing. Recently, however, AGNS was granted funds by the Department of Energy to prepare the necessary procedural and regulatory paperwork in order that the Fuel Receiving and Storage Station (FRSS) of the plant can be licensed by 1985. In this paper, the activities involved in the receiving an unloading of casks at the Barnwell FRSS is simulated by computer using IBM's program software package, General Purpose Simulation System (GPSS). The GPSS model is developed and verified, and steady-state output statistics are achieved. Also, several sensitivity analyses are performed such as, changes in expected arrival schedules and decision policies, and changes to the physical characteristics of the existing FRSS to monitor the effect of these changes in the existing system.
413

Experimental and Computational Study on Pyrolysis and Combustion of Heavy Fuels and their Upgrading Technologies

Guida, Paolo 09 1900 (has links)
Engineering applications of unconventional fuels like HFOs require a detailed understanding of the physics associated with their evaporation. The processing of HFOs involves forming a spray; therefore, studying droplets is of particular interest. The work described in this dissertation tackles two of the most obscure aspects associated with HFOs modelling. The first aspect is the identification of a valid chemical description of the structure of the fuel. In particular, the author focused on finding a methodology that allows identifying a discrete surrogate to describe the complex pool of molecules of which the fuels are made. The second part of the work was devoted to understand and model thermally-induced secondary breakup, which is the primary cause of deviation from the "d2" that multi-component droplet experience. The formulation of a surrogate was successfully achieved by developing and implementing a new algorithm that allows building a surrogate from a set of easily accessible physical properties. A new methodology for the post-processing of experimental data was formulated. The methodology consists of studying the evolution of the normalized distance of the interface from the droplet’s centroid instead of its diameter. The new approach allowed the separation between interface deformation and expansion/shrinking. The information was then processed using the dynamic mode decomposition to separate the stochastic contribution associated with secondary atomization and the deterministic contribution of vaporization. Finally, thermally induced secondary atomization was studied using a CFD code appositely developed. The code is based on the geometric Volume of Fluid (VoF) method and consists of a compressible, multi-phase, multi-component solver in which phase change is considered. The novelty in the proposed approach is that the evaporation source term and the surface tension force are evaluated directly from the geometrically reconstructed interface. The code was validated against the exact solution of analytically solvable problems and experimental data. The solver was then used to study HFO secondary breakup and perform a parametric analysis that helped to understand the problem’s physics. A possible application of this framework is the formulation of sub-models to be applied in spray calculations.
414

Methods for the economic evaluation of petroleum exploration and synthetic fuels production : an application to Brazil

Gray, Dale Franklin January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1982. / Microfiche copy available in Archives and Science. / Includes bibliographies. / by Dale Franklin Gray. / Ph.D.
415

The hydrodesulfurization of thiophene by Mo/Co treated oxyaluminum pillared montimorillonites

Howard, Bret Harmon 12 July 2007 (has links)
The purpose of this study was to investigate the synthesis and properties of oxyaluminum pillared montmorillonites prepared using the controlled hydrolysis of aluminum isopropoxide as the source of pillaring species and to evaluate pillared montmorillonites as supports for hydrodesulfurization (HDS) catalysts. Several synthesis schemes were evaluated for the preparation of pillared montmorillonites. Successful pillaring was accomplished by addition of cyclohexane solutions of aluminum isopropoxide to aqueous montmorillonite suspensions. The pillared montmorillonite preparation was optimized for maximum interlayer spacing by variation of experimental parameters. Samples were characterized by x-ray diffraction and BET surface area. After dehydration a maximum interlayer spacing of approximately 6 A was obtained. As the ratio of aluminum isopropoxide to clay increased the surface area decreased. The interlayer limit was attributed to the primary pillaring species being a plate-like oxyaluminumcation having a boehmite layer structure whose thickness was about 6.1 A. Decreasing surface area for increasing aluminum to clay ratio probably resulted from exchange of larger cationic oxyaluminum plates into the interiayer volume. It was suggested that at the limit of very low surface area with a layer separation of about 6 A, the montmorillonite-oxyaluminum material consisted of alternating montmorillonite and 'boehmitem layers. / Ph. D.
416

A photographic investigation of the collision, reaction, and ignition of hypergol droplets

Howe, Robert Bowman January 1965 (has links)
The experimental apparatus employed in this investigation permitted a fuel droplet and an oxidizer droplet to collide in a nitrogen atmosphere at temperatures from 50°C to 430°C. The resulting phenomena were photographed with a 16mm Fastax camera. Experimentation was completed in three series of tests. The first series consisted of impacting hydrazine droplets with white fuming nitric acid droplets at an impact velocity of 35 cm/sec and at temperatures from 200°C to 425°C. The second series utilized the same fuel and oxidizer at an impact velocity of 122 cm/sec and at temperatures ranging from 50°C to 430°C. The third series employed an alcohol-aniline mixture as the fuel droplets, and white fuming nitric acid as the oxidizer droplets. The impact velocity was 35 cm/sec and the nitrogen temperature ranged from 50°C to 415°C. Ignition was not obtained in the two series employing hydrazine as a fuel. The droplets, upon colliding, underwent a chemical reaction and were blown apart. With the series utilizing an alcohol-aniline mixture as the fuel, the droplets, after collision, formed one large drop which vaporized rapidly. The vapors ignited with flame at temperatures over 200°C. / Master of Science
417

Injection of liquid fuels in supersonic airstreams

Cannon, Steven Cary January 1978 (has links)
An experimental study of the ignition of liquid fuels injected transverse to a hot supersonic (M=1.65) air stream was conducted. The liquids considered were kerosene, CS₂ and water as an inert control. The major variables were: air stagnation temperature in the range 1500 to 2300ºF, injectant flow rate and injection angles from 90º to 45º upstream. The experimental observations were: temperature measurements on the wall near the injector and in the flow downstream of injection self-luminosity photographs and infrared photographs taken with a Thermographic camera. Special attention was directed at the behavior of the liquid layer that had previously been found to form near the injector. No unequivocal evidence of ignition of either fuel was found for normal injection at these conditions. However, clear evidence of ignition of CS₂ was found for the upstream injection angle for T<sub>o</sub> ≥ 2030°F and 80 ≤ P<sub>j</sub> ≤ 135 psi. Higher injection pressures and thus high flow rates failed to produce ignition at any temperature tested. Evidence of CS₂ ignition was found in the infrared photographs and wall and in-stream temperature measurements simultaneously. The infrared photograph indicated possible ignition of the kerosene for upstream injection, but this could not be corroborated with the temperature measurements. / Master of Science
418

Long-term Fuel and Vegetation Responses to Mechanical Mastication in northern California and southern Oregon

Reed, Warren Paul 27 May 2016 (has links)
Historical land use and changes in climate have altered fire behavior and severity in fire-prone ecosystems of western North America. A variety of fuels treatments are used to abate fire hazard, restore ecosystem processes, and increase forest resilience. Mechanical fuels treatments are increasingly used to alter forest structure and fuel continuity due to impediments to the use of prescribed fire. An increasingly common fuels treatment is mechanical mastication. Mastication does not remove fuels, but instead rearranges live and dead vertical woody fuels into a compacted layer on the forest floor. While mastication reduces potential fire intensity, these compacted fuels are flammable and capable of causing tree mortality and other negative ecological consequences when they burn in prescribed fires or wildfires. A current knowledge gap is quantitative information about the rate at which masticated fuels decompose and the rate at which vegetation reestablishes within sites previously masticated. Using 25 sites across northern California and southern Oregon, this thesis examines how masticated fuels change over time. Results from this study demonstrate that the majority of mass lost from masticated fuel beds occurred in the 1 and 10-hour woody fuel classes. Because surface fire behavior is driven by these fine fuels, these findings are valuable to the planning and retreatment of masticated fuels treatments and the corresponding fire suppression efforts in masticated sites. In combination with masticated wood surface fuels, shrubs and small trees play an important role in fire behavior, acting as ladder fuels that exacerbate surface fire behavior and threaten to ignite residual trees. A lack of understanding of how woody vegetation recovers following masticated fuel treatments gives rise to questions and challenges regarding treatment longevity. In this study, species with the ability to resprout tended to recover more quickly than obligate seeding species. Residual conifer saplings or trees that establish in masticated fuelbeds also recovered rapidly, reducing the efficacy of fuels treatments. Future implementation of masticated fuels treatments should consider both woody fuel decomposition and the corresponding recovery of shrubs and small trees to maximize treatment longevity. / Master of Science
419

An optimal withdrawal policy for spent nuclear fuel from on-site storage

Swindle, David Wesley 30 October 2008 (has links)
The need to extend light water reactor spent-fuel on-site storage requirements and the future need to relieve resulting stockpiles necessitates the determination of optimal spent-fuel-withdrawal patterns under various end-use scenarios. End-use scenarios include no-economic- return throwaway and uranium recycle with and without plutonium recycle. Results from developing, analyzing, and solving a spent-fuel-withdrawal model are used to recommend specific strategies. The spent-fuel-withdrawal problem involves the interaction of spent-fuel generation, time and capacity-dependent reprocessing demand, and expected spent-fuel value. Spent-fuel characteristics based upon burnup history and initial composition, are considered along with uranium, separative work, and storage cost projections to realize profitable spent-fuel disposition. Application of the spent-fuel-withdrawal model is done on a per-reactor basis. Assumptions inherent in the application of the model developed include, 1) unconstrained on-site storage capacity, 2) realizable uranium and plutonium values, and 3) capacity constrained reprocessing demand. Examining supply, demand, and characteristics of spent-fuel during a twenty-year horizon, the model application is developed through, 1) a dynamic programming approach, 2) a Hitchcock problem to be solved similarly to a minimum-cost-flow problem, and 3) a linear program definable as a Transportation problem. In the model analyses, the dynamic programming formulation proved to be computationally infeasible. The analyses of the Hitchcock and linear program problem is done by the use of the Out-Of-Kilter Algorithm and the proprietary mathematical MPS-III system, respectfully. Specific results indicate that the economically optimal withdrawal pattern is: 1) for uranium and plutonium recycle, a Last-In-First-Out pattern, and 2) for uranium recycle only, no discernible pattern. / Master of Science
420

Electrocatalytic reactors for syngas production from natural gas

Samiee, L., Rahmanian, Nejat 12 January 2024 (has links)
No / The emission of greenhouse gases on a global scale is predominantly caused by the utilization of fossil fuels. Various methods have been explored to address the recycling of CO2, which among, the CO2 conversion into high-value chemicals become so promising. The purpose of this book chapter evaluation is CO2 reduction and H2 evolution reactions for producing syngas. A comprehensive analysis shall highlight (i) the technical advantages and impediments of various reactor classifications, (ii) the effect of electrolytes on electrolyzers in the liquid phase, and (iv) the catalysts that are viable for the creation of important products such as CO.

Page generated in 0.0328 seconds