• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression and Purification of Murine Tripeptidyl Peptidase II

Gustafsson, Sofia January 2012 (has links)
Tripeptidyl peptidase II (TPPII) is an exopeptidase which cleaves tripeptides from theN-terminus of peptides. The exact functional role of TPPII is still a matter of investigation. Itis believed that the enzyme is primarily involved in intracellular protein degradation, where itcooperates with the proteasome and other peptidases to degrade proteins into free aminoacids. These amino acids can subsequently be used in the production of new proteins. The aimof this work was to express murine wild type TPPII using E. coli and thereafter purify theenzyme from the bacterial lysate. Methods used for the purification included protein andnucleic acid precipitation, anion exchange chromatography, hydrophobic interactionchromatography and gel filtration. The presence of TPPII was determined using activityassay, western blot and SDS-PAGE. Despite the fact that some modification is still needed,the purification yielded a total of 34μg TPPII with a purity of approximately 60%. Thispurified enzyme can be used for future functional characterization.
2

Systems enabling antibody-mediated proteomics research

Falk, Ronny January 2006 (has links)
As many genome sequencing efforts today are completed, we are now provided with the genetic maps for several organisms, including man. With these maps at hand, the scientific focus is now shifting towards investigations of the functionality of proteins. This task is even more challenging than the genomic field since proteins, in contrast to DNA, do not allow themselves to be specifically probed or amplified by easy and generic methods. However, to achieve knowledge regarding protein function, useful information includes where, when and how much certain proteins are expressed in an organism. Such information can be obtained if protein-specific binding molecules are available as tools. One such class of target specific binders are the antibody molecules, traditionally employed in a broad variety of biotechnical applications, including protein localization studies on both cellular and sub cellular levels. In a first serie of studies, new methodology for recombinant production and purification of antigens for generation of antibodies via immunization routes were investigated. Parallel affinity gene fusion-based expression systems were used for evaluation of different concepts for production of antigen and post-immunization antibody purification. Carefully designed protein antigens from different organisms were produced and used to raise antisera which were affinity purified on their respective antigens to obtain highly specific polyclonal antibodies (monospecific antibodies). One of the constructed expression systems includes an affinity handle, ZSPA-1, previously selected from a combinatorial protein library for its capacity to selectively bind protein A. This allows for convenient, non IgG-dependent, affinity purification of proteins on conventional protein A resins. A strategy where highly target specific antibody preparations could be affinity purified in a more streamlined setup is also presented. By this strategy it was possible to fractionate antibodies showing reactivity to different parts of the antigen into separate fractions. This resulted in affinity purified antibodies showing monospecific but still multi-epitope reactivity. Purified monospecific antibodies were used in different studies including Western blot immunofluorescence and recovery applications. For affinity purification of endogenous target from its native surrounding a selective elution strategy where the recombinant antigen was used to competitively elute the captured target was developed. / QC 20100824
3

Functional proteomics : Generation and analysis of cDNA-encoded proteins

Gräslund, Susanne January 2002 (has links)
No description available.
4

Functional proteomics : Generation and analysis of cDNA-encoded proteins

Gräslund, Susanne January 2002 (has links)
No description available.
5

Mycobacterium tuberculosis kinases as potential drug targets: production of recombinant kinases in E. coli for functional characterization and enzyme inhibition screening against the medicinal plant Pelargonium sidoides

Lukman, Vishani 01 1900 (has links)
Tuberculosis (TB) is an infectious and fatal disease that ranks as the second leading killer worldwide. It is caused by Mycobacterium tuberculosis (Mtb) which is an obligate intracellular parasite that colonizes the alveolar macrophages of the immune system. The major health concern associated with TB is its co-infection with HIV and the development of strains with multi-drug resistance. The elimination of TB has been hindered due to the lack of understanding of the survival strategies used by this pathogen. Thus, research towards discovering new effective antibacterial drugs is necessary and a group of Mtb kinase enzymes were targeted in this study because these enzymes are crucial for metabolism, pathogenesis and, hence, the survival of Mtb. Kinases are a group of structurally distinct and diverse proteins that catalyze the transfer of the phosphate group from high energy donor molecules such as ATP (or GTP) to a substrate. The phosphorylation of proteins modifies the activity of specific proteins which is subsequently used to control complex cellular processes within Mtb. The starting point of this research targeted eight specific Mtb kinases namely; Nucleoside diphosphokinase, Homoserine kinase, Acetate kinase, Glycerol kinase, Thiamine monophosphate kinase, Ribokinase, Aspartokinase and Shikimate kinase. The aim of this project was to subclone the gene sequences for these eight recombinant Mtb kinases and express them in Escherichia coli, to purify the proteins and determine their activity. In the effort to find new lead compounds, the final stage of this study focused on the basic screening of the TB kinases against an extract prepared from Pelargonium sidoides, a medicinal plant, to identify any inhibitory effects. Although this traditional medicinal plant has been broadly researched and extensively used to treat TB, there is still a lack of understanding of this plant’s scientific curative effect. Various molecular and biochemical methods were used to achieve the aims of this project. The putative gene sequence was obtained from the annotated genome of H37Rv, deposited at NCBI as NC_000962.2. The genes encoding the kinases were successfully PCR-amplified from genomic DNA, cloned into an expression vector in-frame with a C- or N-terminal 6-histidine-tag and expressed in E. coli BL21 (DE3). The purification of the protein was complex, but various different methods and techniques were explored to obtain sufficient amounts of protein. The functional characterization of the kinases involved an HPLC enzyme assay that showed that the recombinant kinases were active. These enzymes were then screened against the potential inhibitory compounds in P. sidoides using enzyme assays to generate dose-response curves. This allowed an effective comparison not only of the Mtb kinases’ activity under normal conditions but also the kinases’ activity in the presence of a potential inhibitor. Overall, the inhibition of the enzymes required the presence of higher concentrations of the P. sidoides extract. However, the SK enzyme results presented a significantly higher inhibition and the lowest IC50 value, in comparison to the other kinases, which makes this kinase an attractive potential drug target against TB. In summation, cloning and purification of SK was successful, resulting in a concentration of 2030 μg/ml of purified enzyme and its activity analysis demonstrated enzyme functionality. This activity was reduced to zero in the presence of 1 x 102 mg/ml dilution of P. sidoides plant extract. This research conducted has extended the quality of information available in this field of study. These interesting results, proposing and identifying SK as a suitable potential target can be a starting point to significantly contribute and progress in this field of research, with the eventual goal of developing a drug to combat this fatal disease. / Life Sciences / M. Sc. (Life Sciences)
6

Mycobacterium tuberculosis kinases as potential drug targets: production of recombinant kinases in E. coli for functional characterization and enzyme inhibition screening against the medicinal plant Pelargonium sidoides

Lukman, Vishani 01 1900 (has links)
Tuberculosis (TB) is an infectious and fatal disease that ranks as the second leading killer worldwide. It is caused by Mycobacterium tuberculosis (Mtb) which is an obligate intracellular parasite that colonizes the alveolar macrophages of the immune system. The major health concern associated with TB is its co-infection with HIV and the development of strains with multi-drug resistance. The elimination of TB has been hindered due to the lack of understanding of the survival strategies used by this pathogen. Thus, research towards discovering new effective antibacterial drugs is necessary and a group of Mtb kinase enzymes were targeted in this study because these enzymes are crucial for metabolism, pathogenesis and, hence, the survival of Mtb. Kinases are a group of structurally distinct and diverse proteins that catalyze the transfer of the phosphate group from high energy donor molecules such as ATP (or GTP) to a substrate. The phosphorylation of proteins modifies the activity of specific proteins which is subsequently used to control complex cellular processes within Mtb. The starting point of this research targeted eight specific Mtb kinases namely; Nucleoside diphosphokinase, Homoserine kinase, Acetate kinase, Glycerol kinase, Thiamine monophosphate kinase, Ribokinase, Aspartokinase and Shikimate kinase. The aim of this project was to subclone the gene sequences for these eight recombinant Mtb kinases and express them in Escherichia coli, to purify the proteins and determine their activity. In the effort to find new lead compounds, the final stage of this study focused on the basic screening of the TB kinases against an extract prepared from Pelargonium sidoides, a medicinal plant, to identify any inhibitory effects. Although this traditional medicinal plant has been broadly researched and extensively used to treat TB, there is still a lack of understanding of this plant’s scientific curative effect. Various molecular and biochemical methods were used to achieve the aims of this project. The putative gene sequence was obtained from the annotated genome of H37Rv, deposited at NCBI as NC_000962.2. The genes encoding the kinases were successfully PCR-amplified from genomic DNA, cloned into an expression vector in-frame with a C- or N-terminal 6-histidine-tag and expressed in E. coli BL21 (DE3). The purification of the protein was complex, but various different methods and techniques were explored to obtain sufficient amounts of protein. The functional characterization of the kinases involved an HPLC enzyme assay that showed that the recombinant kinases were active. These enzymes were then screened against the potential inhibitory compounds in P. sidoides using enzyme assays to generate dose-response curves. This allowed an effective comparison not only of the Mtb kinases’ activity under normal conditions but also the kinases’ activity in the presence of a potential inhibitor. Overall, the inhibition of the enzymes required the presence of higher concentrations of the P. sidoides extract. However, the SK enzyme results presented a significantly higher inhibition and the lowest IC50 value, in comparison to the other kinases, which makes this kinase an attractive potential drug target against TB. In summation, cloning and purification of SK was successful, resulting in a concentration of 2030 μg/ml of purified enzyme and its activity analysis demonstrated enzyme functionality. This activity was reduced to zero in the presence of 1 x 102 mg/ml dilution of P. sidoides plant extract. This research conducted has extended the quality of information available in this field of study. These interesting results, proposing and identifying SK as a suitable potential target can be a starting point to significantly contribute and progress in this field of research, with the eventual goal of developing a drug to combat this fatal disease. / Life Sciences / M. Sc. (Life Sciences)

Page generated in 0.1039 seconds