• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Interaction of the Adenovirus E1B-55K Protein with a Histone Deacetylase Complex: Its Importance in Regulation of P53 Protein Functions

Punga, Tanel January 2003 (has links)
<p>The human tumour suppressor protein p53 is an effective inhibitor of cell growth, by inducing cell cycle arrest and apoptosis. However, p53-induced cell growth inhibition can be detrimental for virus multiplication. Therefore, viruses encode for proteins, which can interfere with the functions of the p53 protein. Human adenoviruses encode for a transcription repressor protein named E1B-55K, which inhibits the activity of the p53 protein during a lytic adenovirus infection.</p><p>In this thesis, we have studied the biochemical characteristics of the E1B-55K protein and how the E1B-55K protein interferes with the function of p53 as a transcription factor.</p><p>Our data show that the E1B-55K protein interacts with the Sin3 co-repressor complex in adenovirus transformed and in adenovirus infected cells. Furthermore, the E1B-55K protein recruites a histone deacetylase activity, indicating that the E1B-55K protein is associated with a functional chromatin modifying complex. We also show that in addition to repressing p53-activated transcription, E1B-55K could also relieve p53-mediated repression of the survivin and Map4 promoters.</p><p>Previous results have shown that E1B-55K inhibits p53 as a transcriptional activator of the p21/CDKN1A promoter. Here we show that the E1B-55K protein prevents p53 from inducing histone H3 and H4 acetylation on p21/CDKN1A promoter, which coincided with the inhibition of p21/CDKN1A protein expression. Notably, the Sin3 complex was detected in the vicinity of the p53 binding site on the p21/CDKN1A promoter, suggesting that the E1B-55K protein blocked p53-mediated histone acetylation by recruitment of a histone deacetylase activity. Inhibition of p21/CDKN1A protein expression might be the reason, why the E1B-55K protein alleviates p53-dependent transcriptional repression of the survivin promoter. </p><p>Finally, we show that oligomerisation of the E1B-55K protein is important for the defined subcellular localization of the protein and for its function as a repressor of p53-activated transcription.</p>
2

The Interaction of the Adenovirus E1B-55K Protein with a Histone Deacetylase Complex: Its Importance in Regulation of P53 Protein Functions

Punga, Tanel January 2003 (has links)
The human tumour suppressor protein p53 is an effective inhibitor of cell growth, by inducing cell cycle arrest and apoptosis. However, p53-induced cell growth inhibition can be detrimental for virus multiplication. Therefore, viruses encode for proteins, which can interfere with the functions of the p53 protein. Human adenoviruses encode for a transcription repressor protein named E1B-55K, which inhibits the activity of the p53 protein during a lytic adenovirus infection. In this thesis, we have studied the biochemical characteristics of the E1B-55K protein and how the E1B-55K protein interferes with the function of p53 as a transcription factor. Our data show that the E1B-55K protein interacts with the Sin3 co-repressor complex in adenovirus transformed and in adenovirus infected cells. Furthermore, the E1B-55K protein recruites a histone deacetylase activity, indicating that the E1B-55K protein is associated with a functional chromatin modifying complex. We also show that in addition to repressing p53-activated transcription, E1B-55K could also relieve p53-mediated repression of the survivin and Map4 promoters. Previous results have shown that E1B-55K inhibits p53 as a transcriptional activator of the p21/CDKN1A promoter. Here we show that the E1B-55K protein prevents p53 from inducing histone H3 and H4 acetylation on p21/CDKN1A promoter, which coincided with the inhibition of p21/CDKN1A protein expression. Notably, the Sin3 complex was detected in the vicinity of the p53 binding site on the p21/CDKN1A promoter, suggesting that the E1B-55K protein blocked p53-mediated histone acetylation by recruitment of a histone deacetylase activity. Inhibition of p21/CDKN1A protein expression might be the reason, why the E1B-55K protein alleviates p53-dependent transcriptional repression of the survivin promoter. Finally, we show that oligomerisation of the E1B-55K protein is important for the defined subcellular localization of the protein and for its function as a repressor of p53-activated transcription.
3

Développement de procédés efficaces pour la construction et la production de vecteurs adénoviraux

Gagnon, David 04 1900 (has links)
L’adénovirus possède plusieurs caractéristiques faisant de ce virus un candidat de choix pour la construction de vecteurs utiles dans les études de génomique fonctionnelle. Dans la majorité de ces applications, on a recours à un vecteur adénoviral de première génération délété de sa région E1. L’utilisation de vecteurs adénoviraux comprend deux maillons faibles : la construction du vecteur et la production subséquente de ce dernier. Le développement de méthodes alternatives est donc nécessaire pour renforcer ces deux maillons, permettant ainsi une utilisation étendue de ces vecteurs. Ce développement va s’articuler sur deux axes : l’ingénierie du vecteur de transfert pour la construction de l’adénovirus recombinant et l’ingénierie d’une lignée cellulaire pour la production du vecteur. En utilisant un vecteur de transfert adénoviral co-exprimant, à partir d’un promoteur régulable à la tétracycline, la protéase de l’adénovirus et une protéine de fluorescence verte (GFP) par l’intermédiaire d’un site d’entrée ribosomal interne (IRES), notre groupe a établi que la sélection positive, via l’expression ectopique de la protéase, est un processus efficace pour la création de librairie d’adénovirus recombinants. Par contre, la diversité atteinte dans ce premier système est relativement faible, environ 1 adénovirus recombinant par 1 000 cellules. Le travail effectué dans le cadre de cette thèse vise à construire un nouveau transfert de vecteur dans lequel l’expression de la protéase sera indépendante de celle du transgène permettant ainsi d’optimiser l’expression de la protéase. Ce travail d’optimisation a permis de réduire le phénomène de transcomplémentation du virus parental ce qui a fait grimper la diversité à 1 virus recombinant par 75 cellules. Ce système a été mis à l’épreuve en générerant une librairie adénovirale antisens dirigée contre la GFP. La diversité de cette librairie a été suffisante pour sélectionner un antisens réduisant de 75% l’expression de la GFP. L’amplification de ce vecteur adénoviral de première génération doit se faire dans une lignée cellulaire exprimant la région E1 telle que les cellules 293. Par contre, un adénovirus de première génération se répliquant dans les cellules 293 peut échanger, par recombinaison homologue, son transgène avec la région E1 de la cellule créant ainsi un adénovirus recombinant réplicatif (RCA), compromettant ainsi la pureté des stocks. Notre groupe a déjà breveté une lignée cellulaire A549 (BMAdE1) exprimant la région E1, mais qui ne peut pas recombiner avec le transgène du virus. Par contre, le niveau de réplication de l’adénovirus dans les BMAdE1 est sous-optimal, à peine 15-30% du niveau obtenu dans les cellules 293. Le travail fait dans le cadre de cette thèse a permis de mettre en évidence qu’une expression insuffisante d’E1B-55K était responsable de la mauvaise réplication du virus dans les BMAdE1. Nous avons produit de nouveaux clones à partir de la lignée parentale via une transduction avec un vecteur lentiviral exprimant E1B-55K. Nous avons confirmé que certains clones exprimaient une plus grande quantité d’E1B-55K et que ces clones amplifiaient de manière plus efficace un vecteur adénoviral de première génération. Ce clone a par la suite été adapté à la culture en suspension sans sérum. / The adenovirus has numerous interesting characteristics making this particular virus an ideal candidate for the construction of vector for conducting studies in functional genomics. The vast majority of those applications rely on a so-called “first-generation vector” in which the E1 region is replaced by a transgene. Despite all their advantages, there are 2 weak links associated with first-generation vector: the efficient construction of the actual vector and its production. Therefore, the development of alternative methods for construction and production is necessary to ensure their usefulness. The development will involve 2 axes: the reengineering of the transfer vector for the construction of recombinant adenovirus and the reengineering of the cell line capable of producing the vector. Using a transfer vector co-expressing the adenoviral protease (PS) gene and GFP by using an IRES under the control of a tetracycline-regulated promoter, our laboratory previously established the proof of concept that positive selection of recombinant adenovirus through ectopic expression of the PS gene was an efficient approach to generate adenoviral libraries. However, the diversity achieved was quite low, around 1 recombinant adenovirus per 1,000 cells. The goal of this thesis was to design a new transfer vector in which the PS expression was independent from the expression of the transgene in order to be able to optimize its expression independently. We also improved library diversity by lowering the amount of PS in order to reduce the the trans-complementation from the transfer vector. Using this method, at least 1 recombinant adenovirus per 75 cells was generated with 100% of the plaques being recombinant. This system was successfully used to generate an antisense library targeting GFP. The diversity of the library was high enough to allow the selection of an antisense that inhibited 75% of GFP expression. Amplification of those first-generation recombinant adenoviruses must take place in an E1-expressing cell such as 293 cells. However, when replicating in 293 cells, the recombinant adenovirus can exchange their transgene with the E1 region of the cell by homologous recombination, which results in the generation of a fully replicative adenovirus (RCA), a situation that compromises the purity of the viral preparation. Our laboratory has previously patented an A549 cell line expressing the E1 region and producing RCA-free recombinant adenovirus (BMAdE1). However, the replication of E1-deleted adenovirus in BMAdE1 cells was sub-optimal, in the range of 15-30% the level obtained in 293 cells. The work done in this thesis establishes that the low level of E1B-55K could be responsible for the lower productivity of BMAdE1 cells. Thus, we have derived new clones following lentiviral transduction in order to increase E1B-55K expression. Western blot confirmed that some clones expressed more E1B-55K than BMAdE1, and this correlated with a more robust replication of a recombinant adenovirus in those clones. This newly optimized BMAdE1 cell line was adapted to serum-free suspension culture.
4

Développement de procédés efficaces pour la construction et la production de vecteurs adénoviraux

Gagnon, David 04 1900 (has links)
L’adénovirus possède plusieurs caractéristiques faisant de ce virus un candidat de choix pour la construction de vecteurs utiles dans les études de génomique fonctionnelle. Dans la majorité de ces applications, on a recours à un vecteur adénoviral de première génération délété de sa région E1. L’utilisation de vecteurs adénoviraux comprend deux maillons faibles : la construction du vecteur et la production subséquente de ce dernier. Le développement de méthodes alternatives est donc nécessaire pour renforcer ces deux maillons, permettant ainsi une utilisation étendue de ces vecteurs. Ce développement va s’articuler sur deux axes : l’ingénierie du vecteur de transfert pour la construction de l’adénovirus recombinant et l’ingénierie d’une lignée cellulaire pour la production du vecteur. En utilisant un vecteur de transfert adénoviral co-exprimant, à partir d’un promoteur régulable à la tétracycline, la protéase de l’adénovirus et une protéine de fluorescence verte (GFP) par l’intermédiaire d’un site d’entrée ribosomal interne (IRES), notre groupe a établi que la sélection positive, via l’expression ectopique de la protéase, est un processus efficace pour la création de librairie d’adénovirus recombinants. Par contre, la diversité atteinte dans ce premier système est relativement faible, environ 1 adénovirus recombinant par 1 000 cellules. Le travail effectué dans le cadre de cette thèse vise à construire un nouveau transfert de vecteur dans lequel l’expression de la protéase sera indépendante de celle du transgène permettant ainsi d’optimiser l’expression de la protéase. Ce travail d’optimisation a permis de réduire le phénomène de transcomplémentation du virus parental ce qui a fait grimper la diversité à 1 virus recombinant par 75 cellules. Ce système a été mis à l’épreuve en générerant une librairie adénovirale antisens dirigée contre la GFP. La diversité de cette librairie a été suffisante pour sélectionner un antisens réduisant de 75% l’expression de la GFP. L’amplification de ce vecteur adénoviral de première génération doit se faire dans une lignée cellulaire exprimant la région E1 telle que les cellules 293. Par contre, un adénovirus de première génération se répliquant dans les cellules 293 peut échanger, par recombinaison homologue, son transgène avec la région E1 de la cellule créant ainsi un adénovirus recombinant réplicatif (RCA), compromettant ainsi la pureté des stocks. Notre groupe a déjà breveté une lignée cellulaire A549 (BMAdE1) exprimant la région E1, mais qui ne peut pas recombiner avec le transgène du virus. Par contre, le niveau de réplication de l’adénovirus dans les BMAdE1 est sous-optimal, à peine 15-30% du niveau obtenu dans les cellules 293. Le travail fait dans le cadre de cette thèse a permis de mettre en évidence qu’une expression insuffisante d’E1B-55K était responsable de la mauvaise réplication du virus dans les BMAdE1. Nous avons produit de nouveaux clones à partir de la lignée parentale via une transduction avec un vecteur lentiviral exprimant E1B-55K. Nous avons confirmé que certains clones exprimaient une plus grande quantité d’E1B-55K et que ces clones amplifiaient de manière plus efficace un vecteur adénoviral de première génération. Ce clone a par la suite été adapté à la culture en suspension sans sérum. / The adenovirus has numerous interesting characteristics making this particular virus an ideal candidate for the construction of vector for conducting studies in functional genomics. The vast majority of those applications rely on a so-called “first-generation vector” in which the E1 region is replaced by a transgene. Despite all their advantages, there are 2 weak links associated with first-generation vector: the efficient construction of the actual vector and its production. Therefore, the development of alternative methods for construction and production is necessary to ensure their usefulness. The development will involve 2 axes: the reengineering of the transfer vector for the construction of recombinant adenovirus and the reengineering of the cell line capable of producing the vector. Using a transfer vector co-expressing the adenoviral protease (PS) gene and GFP by using an IRES under the control of a tetracycline-regulated promoter, our laboratory previously established the proof of concept that positive selection of recombinant adenovirus through ectopic expression of the PS gene was an efficient approach to generate adenoviral libraries. However, the diversity achieved was quite low, around 1 recombinant adenovirus per 1,000 cells. The goal of this thesis was to design a new transfer vector in which the PS expression was independent from the expression of the transgene in order to be able to optimize its expression independently. We also improved library diversity by lowering the amount of PS in order to reduce the the trans-complementation from the transfer vector. Using this method, at least 1 recombinant adenovirus per 75 cells was generated with 100% of the plaques being recombinant. This system was successfully used to generate an antisense library targeting GFP. The diversity of the library was high enough to allow the selection of an antisense that inhibited 75% of GFP expression. Amplification of those first-generation recombinant adenoviruses must take place in an E1-expressing cell such as 293 cells. However, when replicating in 293 cells, the recombinant adenovirus can exchange their transgene with the E1 region of the cell by homologous recombination, which results in the generation of a fully replicative adenovirus (RCA), a situation that compromises the purity of the viral preparation. Our laboratory has previously patented an A549 cell line expressing the E1 region and producing RCA-free recombinant adenovirus (BMAdE1). However, the replication of E1-deleted adenovirus in BMAdE1 cells was sub-optimal, in the range of 15-30% the level obtained in 293 cells. The work done in this thesis establishes that the low level of E1B-55K could be responsible for the lower productivity of BMAdE1 cells. Thus, we have derived new clones following lentiviral transduction in order to increase E1B-55K expression. Western blot confirmed that some clones expressed more E1B-55K than BMAdE1, and this correlated with a more robust replication of a recombinant adenovirus in those clones. This newly optimized BMAdE1 cell line was adapted to serum-free suspension culture.

Page generated in 0.0219 seconds