• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Assessment of Post-earthquake Building Damage Using High-resolution Satellite Images and LiDAR Data - a Case Study From Port-au-prince, Haiti

Koohikamali, Mehrdad 08 1900 (has links)
When an earthquake happens, one of the most important tasks of disaster managers is to conduct damage assessment; this is mostly done from remotely sensed data. This study presents a new method for building detection and damage assessment using high-resolution satellite images and LiDAR data from Port-au-Prince, Haiti. A graph-cut method is used for building detection due to its advantages compared to traditional methods such as the Hough transform. Results of two methods are compared to understand how much our proposed technique is effective. Afterwards, sensitivity analysis is performed to show the effect of image resolution on the efficiency of our method. Results are in four groups. First: based on two criteria for sensitivity analysis, completeness and correctness, the more efficient method is graph-cut, and the final building mask layer is used for damage assessment. Next, building damage assessment is done using change detection technique from two images from period of before and after the earthquake. Third, to integrate LiDAR data and damage assessment, we showed there is a strong relationship between terrain roughness variables that are calculated using digital surface models. Finally, open street map and normalized digital surface model are used to detect possible road blockages. Results of detecting road blockages showed positive values of normalized digital surface model on the road centerline can represent blockages if we exclude other objects such as cars.
332

Assessment of linear and static procedures for performance-based seismic evaluation of structures

Friis, Donna Lisa Renate 01 October 2001 (has links)
No description available.
333

A new hybrid method for three-dimensional dynamic soil-structure interaction.

Mathur, Ravindra Prasad. January 1989 (has links)
A hybrid method based on three-dimensional finite element idealization in the near field and a semi-analytic scheme using the principles of wave propagation in multilayered half space in the far field is proposed for dynamic soil-structure interaction analysis. It combines the advantages of both the numerical and analytical techniques. A structure resting on the surface or embedded in a multilayered soil-medium and subjected to vertically propagating plane waves is analyzed by using the method. An important aspect of the soil-structure interaction problem considered is the presence of waves scattered from the soil-structure interface and geometrical irregularities in the soil. The dynamic response of an embedded structure of rectangular cross section to a vertically propagating compressional pulse is solved as an example problem. The proposed method is verified by comparison of its predictions with those from a finite element procedure with absorbing boundaries, and from an analytical solution. The results from the hybrid method compare well with those from the other two, with closer correlation between the hybrid and analytical methods.
334

A case study of post-earthquake consequences for women within marginalized groups in Nepal : A qualitative case study with the aim to explore the consequences for women within marginalized groups in a post-earthquake society

Bengts, Elin January 2016 (has links)
This report is the outcome of a case study conducted in Kathmandu, Nepal in April 2016. The purpose of the study is to investigate in the consequences of the 2015 earthquake in Nepal, from the perspective of women within socioeconomically vulnerable groups. The caste system is still practiced nearly all over Nepal and women are still facing multiple forms of discrimination. A woman belonging to the Dalits, which is the group considered to be at the bottom of the hierarchy and below the castes, have no right to control land, housing or money and are exposed to violence and forced sexual labour. The aim of the study is to shed light over how already existing discrimination leads to further examples of discrimination in the aftermath of a natural disaster and the “class-consciousness” of natural disasters. People within a society are living under different conditions and these conditions lead to different consequences when facing a natural disaster. The components of these conditions are often intertwined with each other and should therefore not be examined separately, which is why an intersectional perspective is used for this study. Furthermore, standpoint theory is used as well, to look at these issues from the viewpoint of the marginalized people of the society. Interviews were made with 6 different respondents, who are working for NGOs in and outside of Kathmandu and who through their work are coming on contact with the issues mentioned. My findings show several examples of post-earthquake consequences for women which can be linked to the strong patriarchy, the use of caste system and mistreatment from the government.
335

Development of an approach to liquefaction hazard zonation in the Philippines: application to Laoag City,Northern Philippines

Beroya, Mary Antonette A. January 2008 (has links)
published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
336

Direct in-situ evaluation of liquefaction susceptibility

Roberts, Julia Nicole 11 September 2014 (has links)
Earthquake-induced soil liquefaction that occurs within the built environment is responsible for billions of dollars of damage to infrastructure and loss of economic productivity. There is an acute need to accurately predict the risk of soil liquefaction as well as to quantify the effectiveness of soil improvement techniques that are meant to decrease the risk of soil liquefaction. Current methods indirectly measure the risk of soil liquefaction by empirically correlating certain soil characteristics to known instances of surficial evidence of soil liquefaction, but these methods tend to overpredict the risk in sands with silts, to poorly predict instances of soil liquefaction without surface manifestations, and fail to adequately quantify the effectiveness of soil improvement techniques. Direct in-situ evaluation of liquefaction susceptibility was performed at a single site at the Wildlife Liquefaction Array (WLA) in Imperial Valley, California, in March 2012. The project included a CPT sounding, crosshole testing, and liquefaction testing. The liquefaction testing involved the measurement of water pressure and ground particle motion under earthquake-simulating cyclic loading conditions. The objective of this testing technique is to observe the relationship between shear strain in the soil and the resulting generation of excess pore water pressure. This fundamental relationship dictates whether or not a soil will liquefy during an earthquake event. The direct in-situ evaluation of liquefaction susceptibility approach provides a more accurate and comprehensive analysis of the risks of soil liquefaction. It also has the ability to test large-scale soil improvements in-situ, providing researchers an accurate representation of how the improved soil will perform during a real earthquake event. The most important results in this thesis include the identification of the cyclic threshold strain around 0.02% for the WLA sand, which is very similar to results achieved by other researchers (Vucetic and Dobry, 1986, and Cox, 2006) and is a characteristic of liquefiable soils. Another key characteristic is the 440 to 480 ft/sec (134 to 146 m/s) shear wave velocity of the soil, which are well below the upper limit 656 ft/sec (200 m/s) and an indication that the soil is loose enough for soil liquefaction to occur. The third significant point is that the compression wave velocity of the sand is greater than 4,500 ft/sec (1,370 m/s), indicating that it is at least 99.9% saturated and capable of generating large pore water pressure due to cyclic loading. These three conditions (cyclic threshold strain, shear wave velocity, and compression wave velocity) are among the most important parameters for characterizing a soil liquefaction risk and must all be met in order for soil liquefaction to occur. / text
337

Seismic Design of Post-Tensioned Timber Frame and Wall Buildings

Newcombe, Michael Paul January 2011 (has links)
Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.
338

Project Management Internship in Post-Earthquake Christchurch: A review of experiences gained and lessons learned

Helm, Benjamin January 2013 (has links)
This report discusses the experiences gained and lessons learned during a project management internship in post-earthquake Christchurch as part of the construction industry and rebuild effort.
339

Seismic Response of the UC Physics Building in the Canterbury Earthquakes

McHattie, Samuel Alexander January 2013 (has links)
The purpose of this thesis is to evaluate the seismic response of the UC Physics Building based on recorded ground motions during the Canterbury earthquakes, and to use the recorded response to evaluate the efficacy of various conventional structural analysis modelling assumptions. The recorded instrument data is examined and analysed to determine how the UC Physics Building performed during the earthquake-induced ground motions. Ten of the largest earthquake events from the 2010-11 Canterbury earthquake sequence are selected in order to understand the seismic response under various levels of demand. Peak response amplitude values are found which characterise the demand from each event. Spectral analysis techniques are utilised to find the natural periods of the structure in each orthogonal direction. Significant torsional and rocking responses are also identified from the recorded ground motions. In addition, the observed building response is used to scrutinise the adequacy of NZ design code prescriptions for fundamental period, response spectra, floor acceleration and effective member stiffness. The efficacy of conventional numerical modelling assumptions for representing the UC Physics Building are examined using the observed building response. The numerical models comprise of the following: a one dimensional multi degree of freedom model, a two dimensional model along each axis of the building and a three dimensional model. Both moderate and strong ground motion records are used to examine the response and subsequently clarify the importance of linear and non-linear responses and the inclusion of base flexibility. The effects of soil-structure interaction are found to be significant in the transverse direction but not the longitudinal direction. Non-linear models predict minor in-elastic behaviour in both directions during the 4 September 2010 Mw 7.1 Darfield earthquake. The observed torsional response is found to be accurately captured by the three dimensional model by considering the interaction between the UC Physics Building and the adjacent structure. With the inclusion of adequate numerical modelling assumptions, the structural response is able to be predicted to within 10% for the majority of the earthquake events considered.
340

An Independent Review of Project Management Processes for CERA’s Port Hills Land Clearance Programme

Patterson, Todd Keith January 2014 (has links)
This report to RCP Ltd and University of Canterbury summarises the findings of a 5 month secondment to the CERA Port Hills Land Clearance Team. Improvement strategies were initiated and observed. The Port Hills Land Clearance Programme is the undertaking of the demolition of all built structures from the Crown’s compulsory acquired 714 residential red zoned properties. These properties are zoned red due to an elevated life risk as a result of geotechnical land uncertainty following the 2011 Canterbury Earthquakes.

Page generated in 0.0265 seconds