• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

Reliability Based Safety Assessment Of Buried Continuous Pipelines Subjected To Earthquake Effects

Yavuz, Ercan Aykan 01 January 2013 (has links) (PDF)
Lifelines provide the vital utilities for human being in the modern life. They convey a great variety of products in order to meet the general needs. Also, buried continuous pipelines are generally used to transmit energy sources, such as natural gas and crude oil, from production sources to target places. To be able to sustain this energy corridor efficiently and safely, interruption of the flow should be prevented as much as possible. This can be achieved providing target reliability index standing for the desired level of performance and reliability. For natural gas transmission, assessment of earthquake threats to buried continuous pipelines is the primary concern of this thesis in terms of reliability. Operating loads due to internal pressure and temperature changes are also discussed. Seismic wave propagation effects, liquefaction induced lateral spreading, including longitudinal and transverse permanent ground deformation effects, liquefaction induced buoyancy effects and fault crossing effects that the buried continuous pipelines subjected to are explained in detail. Limit state functions are presented for each one of the above mentioned earthquake effects combined with operating loads. Advanced First Order Second Moment method is used in reliability calculations. Two case studies are presented. In the first study, considering only the load effect due to internal pressure, reliability of an existing natural gas pipeline is evaluated. Additionally, safety factors are recommended for achieving the specified target reliability indexes. In the second case study, reliability of another existing natural gas pipeline subjected to above mentioned earthquake effects is evaluated in detail.
672

Seismic Isolation Of Foundations By Composite Liners

Kalpakci, Volkan 01 February 2013 (has links) (PDF)
In this research, the dynamic behavior of a seismic isolation system composed of high strength geotextile placed over an ultra-high molecular weight polyethylene (UHMWPE) geomembrane (together called as composite liner) beneath the structure is investigated experimentally. The results of the shaking table experiments which were performed on model structures both under harmonic and modified earthquake motions with and without the seismic isolation (composite liner system), are presented in the thesis. The main focus is given on the potential improvement obtained by use of the composite liner system as compared to the unisolated cases. Based on the performed experiments, it is observed that the utilization of composite liner system provides significant reduction in the accelerations and interstorey drift ratios of structures under harmonic motions while signifant drop is obtained in the spectral accelerations under earthquake motions which provide noticeable improvement in the durability of structures under dynamic effects at the expense of increased translational displacements.
673

Development of liquefaction susceptibility and hazard maps for the islands of Jamaica and Trinidad

Kraft, Jason Edmund 09 April 2013 (has links)
Caribbean nations lie within a zone of distinct seismic hazard. While ground motion in the region has been analyzed, the potential for liquefaction has not been evaluated in most cases. In order to evaluate liquefaction, data describing soil composition, surficial geology, and seismic hazard analyses were collected and applied. This allowed for expansion of previously localized liquefaction analysis to be expanded to the extents of two island nations in the Caribbean. This thesis utilizes the Youd and Perkins (1978) qualitative liquefaction susceptibility and Holzer et al. (2011) liquefaction probability methodologies to evaluate the possibility of liquefaction in Trinidad and Jamaica during major seismic events. Maps were developed using geographic information system (GIS) data to compare susceptibility and hazard across the islands at varying levels of magnitude. In this way, the distribution of liquefiable deposits is displayed in a manner that can be used quickly and easily to motivate further study of susceptible regions and mitigation activities to reduce the risk posed by liquefaction in the countries.
674

Seismic Strengthening of Low-Rise Unreinforced Masonry Structures with Flexible Diaphragms

Moon, Franklin L. (Franklin Lehr) 11 December 2003 (has links)
As a capstone to several Mid-America Earthquake Center (MAE Center) projects, a full-scale two story unreinforced masonry (URM) building was tested following the application of several retrofit techniques, which included the use of fiber reinforced polymer (FRP) overlays, near surface mounted (NSM) rods, vertical unbonded post-tensioning, and joist anchors. The test structure was composed of four URM walls, flexible timber diaphragms and interior stud walls, and was designed and built following construction practices consistent with those used in Mid-America prior to 1950. Initial testing subjected both the roof diaphragm and in-plane walls to slowly applied lateral load reversals in an unreinforced sate. Following this series of tests, each in-plane wall was retrofit and retested. Experimental results indicated that global issues such as flange participation and the effects of overturning moment substantially impacted the response of primary components both before and after retrofit. FRP retrofit techniques resulted in strength increases up to 32% and displayed a pseudo-ductile response caused by progressive debonding. For cases where such retrofits forced sliding failures, large increases in energy dissipation resulted. The use of vertical unbonded post-tensioning resulted in strength increases between 40%-60%; however, piers displayed a tendency to switch from a ductile rocking/sliding mode to a more brittle diagonal tension mode. In addition, results highlighted the need for retrofit schemes to employ both horizontal and vertical reinforcement to prevent progressive crack opening that can decrease wall displacement capacity. Based on the experimental results, the model implied by the and quot Prestandard for the Rehabilitation of Existing Structures and quot, FEMA 356, for the analysis of in-plane URM walls was modified and extended to (1) include the effect of FRP pier retrofits and (2) consider the global effects of URM structures. The resulting model displayed reasonable estimates of measured response both before and after retrofit, with an average error of 14%. In addition, the proposed model displayed improvements over the current model from 14% to 66%. Based on the results of sensitivity analyses this improved accuracy was primarily attributed to the consideration of global effects.
675

Earthquake Frequency-Magnitude Distribution and Interface Locking at the Middle America Subduction Zone near Nicoya Peninsula, Costa Rica

Ghosh, Abhijit 21 June 2007 (has links)
Subduction zone megathrusts produce the majority of the world's largest earthquakes. To understand the processes that control seismicity here, it is important to improve our knowledge on the subduction interface characteristics and its spatial variations. Nicoya Peninsula, Costa Rica, extends the continental landmass ~50 km towards the trench, making it a very suitable place to study interface activity from right on the top of the seismogenic zone of the Middle America Subduction Zone (MASZ). We contribute to and utilize an earthquake catalog of 8765 analyst-picked events to determine the spatial variability in the earthquake frequency-magnitude distribution (FMD) in this region. After initial detection, magnitude determination and location, the events are precisely relocated using a locally derived 3-D seismic compressional and shear wave velocity model (DeShon et al., 2006). After restricting the dataset to events nearest the interface and with low formal error (horizontal location error < 5 km), we retain a subset of 3226 events that best resolves interface activity. Beneath Nicoya, we determine the spatial variability and mean FMD of the interface, and focus on the relative relationship of small-to-large earthquakes, termed b-value. Across the region, the overall b-value (1.18 ± 0.04) is higher than the global average (b~1), and much larger than the global subduction zone average (b~0.6). Significant variation in b-value is observed along the active plate interface. A well resolved zone of lower b is observed at and offshore central Nicoya coast, in a previously determined locked patch using deformation observed from Global Positioning System (GPS). Conversely, high b-values prevail over the subducted portion of the Fisher ridge, which likely ruptured in the 1990 Gulf of Nicoya Mw 7.0 earthquake. Observed regions of low b-value approximately corresponds to more strongly-locked segments of the subduction interface resulting in higher differential stress, which may be released in the next large interface earthquake in this part of the MASZ. Across the region the b-value is found to vary inversely with the degree of interface locking. Thus, it is proposed that if sufficient data exist, spatial b-value mapping can be used as a proxy to determine interface locking. This method is especially useful along the subduction megathrust, which is generally offshore making geodetic measurements difficult.
676

Advanced Models for Sliding Seismic Isolation and Applications for Typical Multi-Span Highway Bridges

Eroz, Murat 14 November 2007 (has links)
The large number of bridge collapses that have occurred in recent earthquakes has exposed the vulnerabilities in existing bridges. One of the emerging tools for protecting bridges from the damaging effects of earthquakes is the use of isolation systems. Seismic isolation is achieved via inserting flexible isolator elements into the bridge that shift the vibration period and increase energy dissipation. To date, the structural performance of bridges incorporating sliding seismic isolation is not well-understood, in part due to the lack of adequate models that can account for the complex behavior of the isolators. This study investigates and makes recommendations on the structural performance of bridges utilizing sliding type seismic isolators, based on the development of state-of-the-art analytical models. Unlike previous models, these models can account simultaneously for the variation in the normal force and friction coefficient, large deformation effects, and the coupling of the vertical and horizontal response during motion. The intention is to provide support for seismic risk mitigation and insight for the analysis and design of seismically isolated bridges by quantifying response characteristics. The level of accuracy required for isolator analytical models used in typical highway bridges are assessed. The comparative viability of the two main isolator types (i.e. sliding and elastomeric) for bridges is investigated. The influence of bridge and sliding isolator design parameters on the system s seismic response is illustrated.
677

Numerical Simulation of Earthquake Ground Motions in the Upper Mississippi Embayment

Fernandez Leon, J. Alfredo 14 November 2007 (has links)
Earthquake ground motions are needed to evaluate the seismic performance of new and existing structures and facilities. In seismically active regions the strong ground motion recordings database is usually sufficiently large to physically constrain the earthquake estimation for seismic risk assessment. However, in areas of low seismicity rate, particularly in the Central and Eastern United States, the estimation of strong ground motions for a specified magnitude, distance, and site conditions represents a significant issue. The only available approach for ground motion estimation in this region is numerical simulation. In this study, earthquake ground motions have been generated for the Upper Mississippi Embayment using a numerical wave propagation formulation. The effects of epistemic and aleatory uncertainties in the earthquake source, path, and site processes, the effect of non-linear soil behavior, and the effects of the geometry of the Embayment have been incorporated. The ground motions are intended to better characterize the seismic hazard in the Upper Mississippi Embayment by representing the amplitude and variability that might be observed in real earthquakes and to provide resources to evaluate the seismic risk in the region.
678

An Analysis Of Degirmendere Shore Landslide During 17 August 1999 Kocaeli Earthquake

Bulbul, Oguzhan 01 December 2006 (has links) (PDF)
In this study, the failure mechanism of the shore landslide which occured at Degirmendere coast region during 17 August 1999 Kocaeli (Izmit) - Turkey earthquake is analyzed. Geotechnical studies of the region are at hand, which reveal soil properties and geological formation of the region as well as the topography of the shore basin after deformations. The failure is analyzed as a landslide and permanent displacements are calculated by Newmark Method under 17 August 1999 Izmit record, scaled to a maximum acceleration of 0.4g. There are discussions on the main dominating mechanism of failure / landslide, liquefaction, fault rupture and lateral spreading. According to the studies, the failure mechanism is a seismically induced shore landslide also triggered by liquefaction and fault rupture, accompanied by the mechanism of lateral spreading by turbulence. A seismically induced landslide is discussed and modeled in this study. The finite element programs TELSTA and TELDYN are employed for static and dynamic analyses. Slope stability analyses are performed with the program SLOPE. The permanent displacements are calculated with Newmark Method, with the help of a MATLAB program, without considering the excess pore pressures.
679

Development Of A Physical Theory Model For The Simulation Of Hysteretic Behavior Of Steel Braces

Calik, Ertugrul Emre 01 April 2007 (has links) (PDF)
Bracing members are considered to be effective earthquake-resistant elements as they improve the lateral strength and stiffness of the structural system and contribute to seismic energy dissipation by deforming inelastically during severe earthquake motions. However, the cyclic behavior of such bracing members is quite complex because it is influenced by both buckling and yielding. This thesis presents simple but an efficient analytical model that can be used to simulate the inelastic cyclic behavior of steel braces. This model achieves realism and efficiency by combining analytical formulations with some semi-empirical formulas developed on the basis of a study of experimental data. A brace is idealized as a pin-pin ended member with a plastic hinge located at mid-length of a brace Input parameters of the model are based on only material properties such as steel yield strength and modulus of elasticity as well as geometric properties including cross-sectional area, moment of inertia, etc. The obtained results are verified by the experimental and available analytical results.
680

Analysis Of Blast Loading Effect On Regular Steel Building Structures

Tahmilci, Fatih 01 December 2007 (has links) (PDF)
Concern about effect of explosives effect on engineering structures evolved after the damage of Second World War. Beginning from 90&rsquo / s with the event of bombing Alfred P. Murrah Federal building located in Oklahoma City this concern deepened and with the attack to World Trade Center twin towers on September 11, 2001 it is peaked. Recent design codes mainly focus on earthquake resistant design and strengthening of the structures. These code design methodologies may sometimes satisfy current blast resistant design philosophy, but in general code compliant designs may not provide recognizable resistance to blast effect. Therefore designer should carry out earthquake resistant design with the blast resistant design knowledge in mind in order to be able to select the most suitable framing scheme that provide both earthquake and blast resistance. This is only possible if designer deeply understands and interprets the blast phenomenon. In this study, it is intended to introduce blast phenomenon, basic terminology, past studies, blast loading on structures, blast structure interaction, analysis methodologies for blast effect and analysis for blast induced progressive and disproportionate collapse. Final focus is made on a case study that is carried out to determine whether a regular steel structures already designed according to Turkish Earthquake Code 2007 requirements satisfy blast, thus progressive collapse resistance requirements or not.

Page generated in 0.3865 seconds