• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization and Biological Characterization of Decellularized Adipose Tissue Scaffolds for Soft Tissue Reconstruction

Fuetterer, Lydia 30 January 2014 (has links)
It would be a great advantage in reconstructive surgery to have an off-the-shelf biomaterial to promote regeneration and volume augmentation following soft tissue damage. With this long-term objective, human adipose tissue (fat) is an abundant and accessible source of extracellular matrix (ECM) for bioscaffold fabrication. The main goal of the current research project was to optimize the established 5-day detergent-free decellularization protocol developed by the Flynn group, by shortening it to a maximum of 3 days, while achieving comparable results in terms of cell and lipid extraction with preservation of the ECM. The effectiveness of the optimized protocol was assessed by examination of the decellularized adipose tissue (DAT) and its characteristic biological properties, including in vitro bioactivity assays with human adipose-derived stem cells (ASCs) to measure adipogenic potential, as well as in vivo testing of scaffold biocompatibility. In the optimized approach, the addition of mechanical processing steps including repeated pressing and centrifugation were shown to enhance cell extraction. Fibrous ultrastructure was observed under scanning electron microscopy (SEM) for the original and optimized protocols. The preservation of collagen fibres was assessed with picro-sirius red staining and confirmed by high hydroxyproline content. Enhanced preservation of glycosaminoglycans (GAGs) was determined for the optimized protocol. Residual DNA content was higher in the DAT scaffolds processed with the optimized protocol, including larger DNA fragments that were not typically observed in the samples treated with the original protocol, which incorporated additional enzymatic treatment stages with DNase, RNase and lipase. However, no residual nuclei were visualized through DAPI staining for both protocols. Enhanced removal of DNA was achieved with electron beam (e-beam) sterilization. E-beam sterilization caused some changes in the fine fibrous structure of the ECM, but did not negatively affect the adipo-conductive potential in vitro. In comparison to the original protocol, DAT produced via the optimized protocol exhibited similar adipo-conductive properties in vitro. The in vivo biocompatibility study over a 16 week period using an immunocompetent Wistar rat model showed promising results. DAT implants produced with the original and optimized protocols promoted adipogenesis and angiogenesis, gradually being remodelled to resemble mature adipose tissue. / Thesis (Master, Chemical Engineering) -- Queen's University, 2014-01-30 12:25:22.044
2

Tyramine Substituted-Hyaluronan Enriched Fascia for Rotator Cuff Tendon Repair

Chin, LiKang 07 July 2011 (has links)
No description available.
3

The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks

Sapudom, Jiranuwat, Rubner, Stefan, Martin, Steve, Kurth, Tony, Riedel, Stefanie, Mierke, Claudia T., Pompe, Tilo 08 February 2019 (has links)
The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter - and not pore size - to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties.

Page generated in 0.0572 seconds