1 |
Light Emission From Rare Earth-Doped Silicon Oxide Films Deposited By ECR-PECVDLi, Jing January 2008 (has links)
<p>Silicon oxide films (oxygen-rich or silicon-rich) doped with various rare-earth (RE) [cerium (Ce), terbium (Tb), europium (Eu) and erbium (Er)] elements have been by deposited by electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD). The successful in-situ incorporation of high concentrations of RE elements has been confirmed by Rutherford backscattering spectrometry (RBS), and the optical properties of the films were analyzed by Photoluminescence (PL) spectroscopy.</p><p> Ce, Tb, Eu and Er related emission was observed from the films with corresponding doping and was found to be sensitive to RE concentration, the presence of Si nanoclusters (Si-ncs) and annealing induced structural evolution. The significant enhancement of Ce^3 + emission in Ce-doped oxygen-rich films under annealing in flowing N2 at 1200 °C was found to be related to the formation of cerium silicate whose presence was confirmed by Fourier transform infra-red (FTIR) spectra and high-resolution transmission electron microscopy (HR-TEM) images. The observation of intense Tb^3+ emission from Tb-doped oxygen-rich films under nonresonant excitation revealed the presence of indirect excitation processes. The organic ligands introduced from the Tb(tmhd)3 precursor during deposition was considered as the possible sensitizer. The presence of Si-ncs in Ce or Eu-doped silicon-rich films resulted in the quenching of both RE and Si-ncs PL, while in Tb or Er-doped silicon-rich films the coupling between Si-nes and RE ions can excite RE-related emission efficiently. The formation of Si-ncs with sizes of 2-3 nm in Tb-doped silicon-rich films under annealing in flowing N2 at 1100 and 1200 °C was revealed by HR-TEM images.</p> / Thesis / Master of Applied Science (MASc)
|
2 |
Optical and Electrical Properties of Ce Doped Silicon Based Thin FilmsGao, Yuxuan January 2020 (has links)
Silicon oxide and silicon oxynitride thin films with in-situ cerium (Ce) doping were deposited using electron-cyclotron-resonance plasma enhanced chemical-vapor deposition (ECR-PECVD) on p-type silicon substrates. Oxygen was gradually substituted by nitrogen to produce SiOxNy thin films with different layer compositions. Refractive indices extracted from variable-angle spectroscopic ellipsometry (VASE) measurements classified the thin films into two main groups, SiOx and SiOxNy. The thin film composition was studied by Rutherford Backscattering Spectrometry (RBS), verifying the gradual increase in nitrogen content.
Photoluminescence (PL) spectra of samples were obtained using a 375 nm laser diode as an excitation source. All samples were subjected to post-deposition annealing treatment for 1 hour at different temperatures varying from 800 to 1200 °C in both 95% N2 and 5% H2 and pure N2 gas environment, to investigate the effect of hydrogen passivation on the PL irradiance. Samples subjected to annealing yielded considerably stronger blue/white PL emission than as-deposited ones, due to the formation of Ce-containing clusters at a temperature of 1200 °C. Optimum layer composition and annealing condition to produce SiOxNy thin films with maximized Ce3+ excitation efficiency were determined. Besides, the effect of hydrogen fluoride (HF) etching on PL irradiance was studied, showing that an HF (1%) etching duration of 90 s yields the highest PL irradiance.
Electrical measurements were carried out for all Ce doped samples as preliminary work for light-emitting device fabrication. ITO and Al are coated as electrodes on the front side of the thin films and backside of the substrates, respectively, using a radio frequency (RF) magnetron sputtering system. I-V measurements were performed to investigate the carrier injection properties and the dominating mechanism of carrier conduction was determined. / Thesis / Master of Applied Science (MASc)
|
3 |
Coupled Luminescence Centres in Erbium-Doped Silicon Rich Silicon Oxide Thin Films Deposited by ECR-PECVDEarl Blakie, Darren 08 1900 (has links)
Silicon has been the mainstay of the microelectroncs industry for over four
decades. There is no material which can match the balance it affords between
cost-benefit, mass consumability, process versatility, and nano-scale electron
device performance. It is, therefore, the logical (and perhaps inevitable) platform
for the development of integrated opto-electronics - a technology that is being
aggressively developed to meet the next generation of bandwidth demands that
are already beginning to strain interconnect architectures all the way down to the
intra-chip level. While silicon-based materials already provide a variety of
passive optical functionalities, the success of a genuine silicon-based optoelectronics
will depend upon the ability of engineers to overcome those
limitations in the optical properties of bulk silicon that occur at critical junctions
in device requirements (eg. modulator and laser). Such solutions must not render
the device processing incompatible with CMOS, for then the "silicon advantage"
is lost. Achieving reliable and efficient electroluminescence in silicon remains
the most intractable of these problems to date.
Reliability problems in recently developed light emitting devices operating
near a wavelength of 1.54 f..Lm, based on the thermally induced formation of
silicon nano-clusters in erbium-doped silicon rich silicon oxide thin films, has reinforced
the need for a further understanding of the luminescence mechanisms in
this material. Indeed, the efficient and stable sensitized photoluminescence from
Er3+ ions (near the telecom wavelength), embedded in an oxide matrix, based on a
quasi-resonant energy transfer from nanostructured silicon, has the potential to
make possible compact waveguide amplifiers and thin film electroluminescence.
This thesis represents a study into the luminescence mechanisms in
erbium-doped silicon oxide (SiOx, x~2) thin films grown by electron cyclotron
resonance plasma enhanced chemical vapour deposition. Importantly, the film
growth relies on in-situ erbium doping through the cracking of a volatile organalanthanide
Er(tmhd)3 source. Rutherford backscattering spectroscopy has been
used to map the film composition space generated from an ECR-PECVD
parameter subspace consisting of precursor gas flow rates and the erbium
precursor temperature. The response of the film photoluminescence spectra in
both visible and infrared bands consistenly reveals three classes of luminescence
centres, whose relative ability to emit light is shown in this study to exhibit a
considerable degree of variability through the control of the film composition,
subsequent thermal anneal temperature, duration, and process ambient. These
three classes consist of optically active Er3
+ ions, silicon nano-clusters phase
separated during thermal annealing, and oxide-based defects (which may
additionally include organic chromophores). The latter two of these species show
the ability to sensitize the Er3 + luminescence. In fact, sensitization by intrinsically
luminescent defects is a rarely studied phenomenon, which seems to be an
important phenomenon in the present films owing to a potentially unique Er
incorporation complex. To further investigate the ability of the oxide defects in
this regard, an optimally luminescent film has been subject to a damaging ion
irradiation to induce a photoluminescence quenching. The subsequent recovery
of this luminescence with stepwise isochronous annealing has been correlated
with Doppler broadening positron annihilation spectroscopy measurements made
with a slow positron beam. Irradiation to a sufficiently high fluence has
demonstrated a unique ability to de-couple luminescent sensitizers and Er3+ ions,
producing enhanced blue and violet emissions. / Thesis / Master of Science (MS)
|
4 |
Luminescent Silicon Carbonitride Thin Films Grown using ECR PECVD: Fabrication and CharacterizationKhatami, Zahra January 2017 (has links)
McMaster University DOCTOR OF PHILOSOPHY (2017) Hamilton, Ontario
(Engineering Physics)
TITLE: Luminescent Silicon Carbonitride Thin Films Grown
using ECR PECVD: Fabrication and Characterization
AUTHOR: Zahra Khatami , M.A.Sc. (Shahid Behehsti University)
SUPERVISOR: Professor Peter Mascher
NUMBER OF PAGES: xx, 268 / Silicon, the cornerstone semiconductor of microelectronics, has seen growing interest
as a low-cost material in photonics. Nanoscience has employed various strategies to
overcome its fundamentally inefficient visible light emission such as developing new
silicon-based nanostructures and materials. Each of the proposed materials has its
own advantages and disadvantages in attempting to reach commercialization. Silicon
carbonitride (SiCxNy) is a less-studied and multi-functional material with tunable
optical features. Despite reports on promising mechanical properties of SiCxNy thin
films, they have not yet been well explored optically. This thesis presents the first in-depth analysis of the luminescent properties of
SiCxNy thin films at a broad range of compositions and temperatures. To better understand
this ternary structure, the reported data of the two fairly well studied binary
structures was used as a reference. Therefore, three classes of silicon-based materials
were produced and explored; SiCxNy, SiNx, and SiCx. Samples were fabricated using
one of the common methods in the semiconductor industry; electron cyclotron resonance
plasma enhanced chemical vapour deposition (ECR PECVD). A multitude of
characterization techniques were utilized including; optical methods (ultraviolet-visible
spectroscopy (UVVIS), variable angle spectroscopic ellipsometry (VASE), photoluminescence
(PL)) and structural techniques (elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), Fourier
transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy
(HR-TEM)).
In view of the exploring of emission properties of SiCxNy materials, our approach
was towards the enhancement of the visible emission by adjusting the film composition
and subsequent thermal treatment. First, a systematic study of the influence of
carbon on the optical, compositional, and structural properties of SiCxNy was carried
out. This investigation was followed by an exploration of influence of growth conditions
on the visible emission and its connection with the other film properties including
hydrogen concentration, microstructure, and composition. In addition, hydrogen
diffusion was explored and associated with two featured annealing temperatures.
The key element of this thesis is the comprehensive report on the interdependency
of the visible light emission and all optical, structural, and compositional features of
SiCxNy structures. Unlocking the potential of this ternary and less studied material
can appeal to the silicon photonics community to implement it in anti-reflection,
solar cell, and sensing applications, and in particular as a substitution of SiNx used
in existing microelectronic devices. / Thesis / Doctor of Philosophy (PhD)
|
5 |
Installation of a New Electron Cyclotron Plasma Enhanced Chemical Vapour Deposition (ECR-PECVD) Reactor and a Preliminary Study ofThin Film DepositionsDabkowski, Ryszard P. January 2012 (has links)
<p>A new electron cyclotron plasma enhanced chemical vapour deposition (ECR-PECVD) reactor has been installed and tested at McMaster University. The focus of this project was the installation of the reactor and the growth of silicon oxide, silicon oxynitride, cerium doped silicon oxynitride and aluminium doped silicon oxide films to test the capabilities of the reactor. Silicon oxide films were prepared with near-stoichiometric compositions and silicon rich compositions. Good repeatability of the growths was seen. An increase in deposition temperature showed stable refractive index and a decrease in the growth rates. Silicon oxynitride films of varying compositions were prepared, and showed a non-uniformity of ~1% and growth rates of ~3.5 nm/min. Films prepared with a low oxygen flow were seen to be nitrogen rich. Although the depositions using Ce(TMHD)4 showed significant cerium incorporation, there was also high carbon contamination. One likely cause of this is the high sublimator temperature used during depositions or a thermal shock to the precursor during initial system calibration. A definitive cause of the carbon contamination has not been established. The cerium films showed strong blue luminescence after post-deposition annealing in N2 above 900° C. A drop in the luminescence was observed at 1100° C and a return of the luminescence at 1200° C. Generally, high cerium incorporation was associated with higher total luminescence. Al(THMD)3 was evaluated as an aluminium precursor for Al-doped silicon oxide films. The films showed aluminium content up to 6% demonstrating the viability of using Al(THMD)3 as a Al doping precursor.</p> / Master of Applied Science (MASc)
|
Page generated in 0.0254 seconds