111 |
Wind Uplift Resistance of Roof Edge ComponentsAlassafin, Wassim 18 March 2013 (has links)
A roof is a critical envelope of a building. It provides protection for the building interior against various weather elements, such as snow, rain and wind. Roofs are normally composed of several components such as insulation, barriers and water proofing membrane. A roof edge is the perimetric part of a roof that serves as termination for roof components. In generic terms, a roof edge system is composed of a parapet with metal components, such as coping and cleat/clip. The edge system is typically subjected to negative pressure (suction) due to wind flow over the roof. Therefore, a roof edge is the front-line of defence against wind action. To develop testing standards and design guidelines for roof edges, a project referred as REST (Roof Edge Systems and Technologies) has been initiated in cooperation with the NSERC (Natural Sciences and Engineering Research Council). For the REST project, this thesis contributes in two folds: wind design procedure and the development of an experimental method for testing roof edge components.
The present thesis analyzes the wind load calculation procedures as per the National Building Code of Canada (NBCC) and American Society of Civil Engineers (ASCE). This has been achieved by taking side-by-side cities along Canada-USA border; wind load calculations were performed to demonstrate the differences and similarities between the NBCC and ASCE. As a part of the current contribution, the existing version of the online Wind-RCI Calculator was updated from NBCC2005 to NBCC2010 provisions.
Towards the experimental contribution, the current study presents a new experimental method for testing and evaluating wind uplift resistance of roof edge systems by simulating wind loads in a lab environment on full-scale mock-ups. The test apparatus had a gust simulator device to mimic wind gusting (dynamic loading). This research investigates three widely used edge systems in North America: Continuous Cleat Configuration (CCC), Discontinuous Cleat Configuration (DCC) and Anchor Clip Configuration (ACC). Preliminary data show that CCC edge system has higher resistance in comparison to DCC and ACC edge systems. The experiments also revealed the need for experimental setup enhancement. Additional investigations by using the enhanced experimental setup were performed on both CCC and DCC edge systems.
|
112 |
An Improved Algorithm for the Net Assignment ProblemHIRATA, Tomio, ONO, Takao 01 May 2001 (has links)
No description available.
|
113 |
Algebraic Analysis of Vertex-Distinguishing Edge-ColoringsClark, David January 2006 (has links)
Vertex-distinguishing edge-colorings (vdec colorings) are a restriction of proper edge-colorings. These special colorings require that the sets of edge colors incident to every vertex be distinct. This is a relatively new field of study. We present a survey of known results concerning vdec colorings. We also define a new matrix which may be used to study vdec colorings, and examine its properties. We find several bounds on the eigenvalues of this matrix, as well as results concerning its determinant, and other properties. We finish by examining related topics and open problems.
|
114 |
Edge Detection based on Grayscale Morphology on Hexagonal ImagesTsai, Wei-cheng 29 August 2012 (has links)
This study focuses on hexagonally sampled images and grayscale morphology. We combine hexagonal image processing and grayscale morphology to develop hexagonal grayscale morphology, and propose an algorithm to detect and enhance edges.
Hexagonal image processing consists of three important steps: conversion of hexagonally sampled images, processing, and display of processed images on simulated hexagonal grid. We construct four different sizes of hexagonal structuring elements to apply morphological operations on hexagonal images. In this study, we applied morphological gradient for edge detection and proposed algorithm for edge enhancement. Moreover, we developed six different shapes of structuring elements to find an optimum one. Finally, we assessed two methods to compare our results, and identified the best result and optimum structuring element. We expect that proposed algorithm will offer a useful tool of image processing on hexagonally sampled images.
|
115 |
Improving Edge Detection Using Intersection ConsistencyCiftci, Serdar 01 October 2011 (has links) (PDF)
Edge detection is an important step in computer vision since edges are utilized by the successor visual processing stages including many tasks such as motion estimation, stereopsis, shape representation and matching, etc. In this study, we test whether a local consistency measure based on image orientation (which we call Intersection Consistency - IC), which was previously shown to improve detection of junctions, can be used for improving the quality of edge detection of seven different detectors / namely, Canny, Roberts, Prewitt, Sobel, Laplacian of Gaussian (LoG), Intrinsic Dimensionality, Line Segment Detector (LSD). IC works well on images that contain prominent objects which are different in color from their surroundings. IC give good results on natural images that have especially cluttered background. On images involving human made objects, IC leads to good results as well. But, depending on the amount of clutter, the loss of true positives might be more crucial. Through our comprehensive investigation, we show that approximately 21% increase in f-score is obtained whereas some important edges are lost. We conclude from our experiments that IC is suitable for improving the quality of edge detection in some detectors such as Canny, LoG and LSD.
|
116 |
Shadow generation Based on RE loops and their angular representationsThakur, Khageshwar 01 January 2001 (has links)
The initial attempt was to find efficient technique to identify shadow plylgons in the shadow-volume based shadow generation algorithm. It was observed that shadows correspond to loops of ridge edges (REs). By identifying all the non-overlapping RE loops of a 3D object, one finds all the shadow polygons and, consequently, all the shadows it generates on other objects as well as shadows it generates on itself. This, however, requires extensive edge-edge intersection tests.It was subsequently realized that by storing the angular representations of the RE looks in a look up table, one can avoid the need of decomposing RE loops into non-overlapping loops and, consequently, the need of performation extensive edge-edge intersection tests. Actually, by building the look up table in a way similar to the bucket-sorted edge table of the standard scan-line method, one can use the table in the scan conversion process to mark the pixels that are in shadow directly, without the need of performing any ray-polygon intersection tests as required in the shadow-volume based shadow generation algorithm. Hence, one gets a new shadow generation technique without the need of performing expensive tests.
|
117 |
Wind Uplift Resistance of Roof Edge ComponentsAlassafin, Wassim 18 March 2013 (has links)
A roof is a critical envelope of a building. It provides protection for the building interior against various weather elements, such as snow, rain and wind. Roofs are normally composed of several components such as insulation, barriers and water proofing membrane. A roof edge is the perimetric part of a roof that serves as termination for roof components. In generic terms, a roof edge system is composed of a parapet with metal components, such as coping and cleat/clip. The edge system is typically subjected to negative pressure (suction) due to wind flow over the roof. Therefore, a roof edge is the front-line of defence against wind action. To develop testing standards and design guidelines for roof edges, a project referred as REST (Roof Edge Systems and Technologies) has been initiated in cooperation with the NSERC (Natural Sciences and Engineering Research Council). For the REST project, this thesis contributes in two folds: wind design procedure and the development of an experimental method for testing roof edge components.
The present thesis analyzes the wind load calculation procedures as per the National Building Code of Canada (NBCC) and American Society of Civil Engineers (ASCE). This has been achieved by taking side-by-side cities along Canada-USA border; wind load calculations were performed to demonstrate the differences and similarities between the NBCC and ASCE. As a part of the current contribution, the existing version of the online Wind-RCI Calculator was updated from NBCC2005 to NBCC2010 provisions.
Towards the experimental contribution, the current study presents a new experimental method for testing and evaluating wind uplift resistance of roof edge systems by simulating wind loads in a lab environment on full-scale mock-ups. The test apparatus had a gust simulator device to mimic wind gusting (dynamic loading). This research investigates three widely used edge systems in North America: Continuous Cleat Configuration (CCC), Discontinuous Cleat Configuration (DCC) and Anchor Clip Configuration (ACC). Preliminary data show that CCC edge system has higher resistance in comparison to DCC and ACC edge systems. The experiments also revealed the need for experimental setup enhancement. Additional investigations by using the enhanced experimental setup were performed on both CCC and DCC edge systems.
|
118 |
Interference cancellation for single carrier transmission systems /Nickel, Patrick-Felix. January 2008 (has links)
Zugl.: Erlangen, Nürnberg, University, Diss., 2008.
|
119 |
Youth culture and identity: a phenomenology of hardcore /Kochan, Brian J., January 2006 (has links) (PDF)
Thesis (M.S.) in Communication--University of Maine, 2006. / Includes vita. Includes bibliographical references (leaves 110-112).
|
120 |
Planning of Mobile Edge Computing Resources in 5G Based on Uplink Energy EfficiencySingh, Navjot 19 November 2018 (has links)
Increasing number of devices demand for low latency and high-speed data transmission require that the computation resources to be closer to users. The emerging Mobile Edge Computing (MEC) technology aims to bring the advantages of cloud computing which are computation, storage and networking capabilities in close proximity of user. MEC servers are also integrated with cloud servers which give them flexibility of reaching vast computational power whenever needed. In this thesis, leveraging the idea of Mobile Edge Computing, we propose algorithms for cost-efficient and energy-efficient the placement of Mobile Edge nodes. We focus on uplink energy-efficiency which is essential for certain applications including augmented reality and connected vehicles, as well as extending battery life of user equipment that is favorable for all applications. The experimental results show that our proposed schemes significantly reduce the uplink energy of devices and minimizes the number of edge nodes required in the network.
|
Page generated in 0.0167 seconds