• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes d’analyse et intérêt de l’étude en EEG-IRMf des variations du signal BOLD dans le temps et dans l’espace au cours des anomalies épileptiformes / EEG-fMRI study of temporal and spatial BOLD signal changes during epileptiform abnormalities

Tyvaert, Louise 18 October 2010 (has links)
L’épilepsie est une pathologie neurologique caractérisée par une activité neuronale excessive et hypersynchrone soit localisée soit diffuse. L’activité neuronale est principalement évaluée par la mesure de l’activité électrique neuronale en électroencéphalographie (EEG). L’EEG dispose d’une excellente résolution temporelle, mais d’une résolution spatiale médiocre. L’enjeu actuel est de développer une technique non-invasive capable d’explorer et de localiser l’activité neuronale avec une bonne résolution temporo-spatiale afin d’améliorer la prise en charge de l’épilepsie. L’activité neuronale peut également être définie par des modifications hémodynamiques et métaboliques (couplage neurovasculaire). L’imagerie par résonance magnétique fonctionnelle (IRMf) mesure ces dernières au travers de l’étude du signal BOLD (Blood Oxygenation Level Dependent) et permet l’exploration de l’activité neuronale avec une bonne résolution spatiale. L’EEG-IRMf permet l’étude du signal BOLD spécifiquement lors des événements EEG. Si cette technique a démontré un certain intérêt dans la localisation des générateurs des anomalies épileptiformes intercritiques, il n’est pas rare d’observer des discordances entre les réponses observées et le foyer épileptique supposé. En effet, les résultats représentent l’activité globale cérébrale au cours de l’anomalie EEG. Dans une première partie, nous avons cherché à améliorer la spécificité des réponses BOLD observées lors des anomalies intercritiques. Pour cela nous avons exploré l’effet des fluctuations de l’état de vigilance au cours de l’enregistrement EEG-IRMf. Les variations des rythmes EEG physiologiques, reflets de la vigilance, sont responsables de fluctuations du signal BOLD significatives. L’intégration de ces données dans le modèle linéaire général diminue la variance du signal BOLD de la période contrôle. Ainsi, les réponses BOLD obtenues pour les anomalies épileptiformes devraient être améliorées et moins discordantes avec la localisation du foyer supposé. Dans une deuxième partie, nous avons souhaité étudier les crises épileptiques. L’application de la technique d’EEG-IRMf dans les crises permettrait d’obtenir des informations spatiales plus fiables que les anomalies intercritiques (meilleur rapport signal sur bruit) et cruciales dans la définition de la zone épileptogène. Sur une série de 8 patients atteints de malformation de développement cortical, nous avons démontré la faisabilité de l’enregistrement des crises épileptiques en EEG-IRMf mais également l’intérêt des informations obtenues sur les structures impliquées lors de la décharge critique. Cependant, l’analyse actuelle modélise la crise comme un événement stationnaire dans le temps et dans l’espace. Et de façon plus nette que lors de l’étude des anomalies intercritiques, les réponses BOLD obtenues pour les crises sont diffuses et reflètent l’activité globale cérébrale sans distinction claire entre la zone génératrice et la zone de propagation. Au cours d’un deuxième travail, nous avons intégré dans l’analyse statistique les informations temporelles fournies par la mesure du signal BOLD. La résolution temporelle de l’IRMf apporte un bon échantillonnage de la réponse hémodynamique et permet une analyse fiable des variations temporelles du signal BOLD. Nous avons analysé les réponses BOLD des crises de 10 patients avec leur décours temporel. Les zones impliquées dans le départ des crises ont pu être discriminées de celles impliquées secondairement dans la propagation. Dans une troisième partie, nous avons utilisé les données BOLD non plus dans un but localisateur de l’activité neuronale mais afin de définir le rôle des structures impliquées dans l’activité épileptique. / "Epilepsy is a neurological disorder defined by an excessive and hypersynchronous neuronal activity. This abnormal cerebral activity can be focal or diffuse. The neuronal activity is commonly determined by the neuronal electric activity explored in electroencephalography (EEG). The EEG is characterized by a high temporal resolution and a low spatial resolution. The development of a new technique that can explore and localize the neuronal activity with a good temporal and spatial resolution is real challenge in the epilepsy field. The neuronal activity may also be defined by hemodynamic and metabolic changes (neurovascular coupling). These changes can be explored by the functional magnetic resonance imaging (fMRI).The fMRI records the BOLD signal (Blood Oxygenation Level Dependent) changes and allows the study of neuronal activity with an excellent spatial resolution. The simultaneous EEG-fMRI recording provides information about BOLD changes specifically correlated in time with EEG events. It has been demonstrated that this technique could provide valuable results on the generators of epileptiform interictal events. However, EEG-fMRI studies showed also some discrepancies between the location of BOLD responses and the suspected epileptic focus. Indeed, BOLD responses reflect not only the generator’s activity but also the global cerebral activity occurring at the time of the epileptiform event. In the first part, we tried to improve the specificity of the BOLD responses observed during interictal epileptiform abnormalities. Therefore, we explored the BOLD effect of the alertness fluctuations during prolonged EEG-fMRI recording. Physiological rhythms variations reflecting the brain state changes are responsible for noteworthy BOLD changes. Physiological EEG rhythms may be integrated to the EEG-fMRI analysis in studies with fluctuation of alertness, to eliminate possible confounding factors. The accuracy of the BOLD results obtained for interictal epileptiform events would be improved. In a second part, we proposed to use the EEG-fMRI technique to study epileptic seizures. This new application would provide information with a better spatial definition than the interictal study (better signal to noise ratio) and crucial for the definition of the epileptogenic zone in presurgical exploration. On a population of eight patients with a malformation of cortical development, we demonstrated that the EEG-fMRI recording during seizures is feasible and that the results showed original and valuable information on cerebral structures involved in the ictal discharge. However, the actual method uses a “bloc design” model and then suggests that the seizure is a stationary event in time and in space. With this method, BOLD responses obtained during ictal event are diffuse and reflect the cerebral global activity without discrimination between the seizure onset zone and the structures secondary involved in the propagation. In a second work, we proposed a new method adding in the statistical analysis the temporal information provided by the BOLD signal measurement. The temporal resolution of fMRI and the temporal sampling used in fMRI protocol are sufficient to study with a good accuracy the temporal variations of the BOLD signal. We analyzed the dynamic time course of the BOLD signal in ten patients with seizures inside the MRI.
2

Epileptic syndromes with continuous spike-waves during slow-sleep: new insights into pathophysiology from functional cerebral imaging

De Tiège, Xavier 08 June 2009 (has links)
Epileptic syndromes with continuous spikes and waves during slow sleep (CSWS) are age-related epileptic encephalopathy characterized by the development of various psychomotor regressions in close temporal concordance with the appearance of the electroencephalogram (EEG) pattern of CSWS (Tassinari et al., 2000). This EEG pattern consists in sleep-related activation and diffusion of spike-wave discharges during usually more than 85% of non-rapid eye movement (non-REM) sleep (Tassinari et al., 2000). A minority of the CSWS cases has been associated to cortical or thalamic lesions (symptomatic cases), while in the other cases, the aetiology is unknown. We reported two families combining benign childhood epilepsy with centro-temporal spikes (BCECS), which is the most common form of idiopathic epilepsy in childhood, and cryptogenic epilepsy with CSWS in first-degree relatives. As idiopathic epilepsies are by definition epilepsies related to a genetic predisposition, these data suggests the existence of a continuum ranging from asymptomatic carriers of centro-temporal spikes to cryptogenic epilepsies with CSWS. This hypothesis is further supported by common clinical characteristics between BCECS and epilepsies with CSWS (Fejerman et al., 2000). Epileptic syndromes with CSWS are characterized by an acute phase defined by the emergence of psychomotor deficits, various types of seizures and CSWS activity at around three to eight years of age (Holmes and Lenck-Santini, 2006; Veggiotti et al., 2001). This acute phase is followed by a recovery phase in which patients’ clinical condition improves together with the remission of CSWS pattern, which spontaneously occur at around 15 years of age but may be prompted by using antiepileptic drugs (AED) including corticosteroids (Holmes and Lenck-Santini, 2006; Veggiotti et al., 2001). This biphasic evolution suggests that CSWS activity largely contributes to the psychomotor deficits observed in these patients (Holmes and Lenck-Santini, 2006; Van Bogaert et al., 2006). However, some authors still consider CSWS activity as an epiphenomenon reflecting the underlying brain pathology, rather than the direct cause of the psychomotor regression (Aldenkamp and Arends, 2004). The pathophysiological mechanisms of how CSWS activity could actually lead to psychomotor regression are still poorly understood. Functional cerebral imaging techniques such as positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), represent unique ways to non-invasively study the impact of epileptic activity on normal brain function. The PET technique using [18F]-fluorodeoxyglucose (FDG) gives information about the regional neuronal glucose consumption via the neurometabolic coupling while the fMRI technique studies the regional perfusional changes directly related to specific events of interest via the neurovascular coupling. We applied both FDG-PET and EEG combined with fMRI (EEG-fMRI) techniques to epileptic children with CSWS to better approach the functional repercussions of CSWS activity on neurophysiological functions and to determine the potential pathophysiological link between CSWS activity and psychomotor regression. In a first FDG-PET study, we determined the regional cerebral glucose metabolic patterns at the acute phase of CSWS in 18 children. We found three types of metabolic patterns: the association of focal hypermetabolism with distinct hypometabolism in 10 patients, focal hypometabolism without any associated area of increased metabolism in five children, and the absence of any significant metabolic abnormality in three patients. The hypermetabolic brain areas were anatomically related to an EEG focus. This anatomical relationship was clearly less consistent for hypometabolic regions. The metabolic abnormalities involved mainly the associative cortices. The metabolic heterogeneity found in these children could be due to the use of corticosteroids before PET as it was significantly associated with the absence of focal hypermetabolism. At the group level, patients with at least one hypermetabolic brain areas showed significant increased metabolism in the right parietal region that was associated to significant hypometabolism in the prefrontal cortex. This finding was interpreted as a phenomenon of remote inhibition of the frontal lobes by highly epileptogenic and hypermetabolic posterior cortex. This hypothesis was supported by effective connectivity analyses which demonstrated the existence of significant changes in the metabolic relationship between these brain areas in this group of children compared to the control group or to the group of children without any significant hypermetabolic brain area. This remote inhibition hypothesis would be reinforced by the demonstration, at the recovery phase of CSWS, of a common resolution of hypermetabolism at the site of epileptic foci and hypometabolism in distant connected brain areas. We thus performed a second FDG-PET study to determine the evolution of cerebral metabolism in nine children recovering from CSWS. At the acute phase of CSWS, all children had a metabolic pattern characterized by the association of focal hypermetabolism with distinct focal hypometabolic areas. The evolution to CSWS recovery was characterized by a complete or almost complete regression of both hypermetabolic and hypometabolic abnormalities. At the group level, the altered effective connectivity found at the acute phase between focal hypermetabolism (centro-parietal regions and right fusiform gyrus) and widespread hypometabolism (prefrontal and orbito-frontal cortices, temporal lobes, left parietal cortex, precuneus and cerebellum) markedly regressed at recovery. These results were of particular interest because they strongly suggested that the metabolic abnormalities observed during the acute phase of CSWS were mainly related to the neurophysiological effects of CSWS activity and not to the underlying cause of the epileptic disease. Moreover, this study confirmed that phenomena of remote inhibition do occur in epileptic syndromes with CSWS. EEG-fMRI is a functional cerebral imaging technique that allows non-invasive mapping of haemodynamic changes directly associated to epileptic activity. In a first EEG-fMRI study, we determined the clinical relevance of the perfusional changes linked to interictal epileptic discharges in a group of seven children with pharmacoresistant focal epilepsy. This study showed that the EEG-fMRI technique is a promising tool to non-invasively localize the epileptic focus and its repercussion on normal brain function in children with epilepsy. Then, to further demonstrate the involvement of CSWS activity in the neurophysiological changes detected by FDG-PET, we used the EEG-fMRI technique to study the perfusional changes directly related to the epileptic activity in an epileptic girl with CSWS. This patient developed a cognitive and behavioural regression in association with a major increase in frequency and diffusion of the spike-wave discharges during the awake state (spike index: 50-75%) and non-REM sleep (spike index: 85-90%). The patient’s neuropsychological profile was dominated by executive dysfunction and memory impairment. During runs of secondarily generalized spike-wave discharges, EEG-fMRI demonstrated deactivations in the lateral and medial fronto-parietal cortices, posterior cingulate gyrus and cerebellum together with focal relative activations in the right frontal, parietal and temporal cortices. These results suggested that the neuropsychological impairment in this case could be related to specific cortical dysfunction secondary to the spread of the epileptic activity from focal hypermetabolic foci. Taken together, both FDG-PET and EEG-fMRI investigations performed in epileptic children with CSWS have shown increases in metabolism/perfusion at the site of the epileptic focus that were associated to decreases in metabolism/perfusion in distinct connected brain areas. These data highly suggest that the neurophysiological effects of CSWS activity are not restricted to the epileptic focus but spread to connected brain areas via a possible mechanism of surrounding and/or remote inhibition. This mechanism is characterised by an epilepsy-induced inhibition of neurons that surround or are remote from the epileptic focus and connected with it via cortico-cortical or polysynaptic pathways (Witte and Bruehl, 1999). The existence of surrounding and remote inhibition phenomena have been well documented in different types of animal models of focal epilepsy using various functional cerebral imaging methods such as autoradiography or optical imaging (Bruehl et al., 1998; Bruehl and Witte, 1995; Witte et al., 1994). Their occurrence in human epilepsy have also been suspected in temporal or extra-temporal lobe epilepsies using FDG-PET, EEG-fMRI or single photon emission computed tomography (SPECT) (Blumenfeld et al., 2004; Schwartz and Bonhoeffer, 2001; Van Paesschen et al., 2003; Van Paesschen et al., 2007). Moreover, the demonstration of the regression of distant hypometabolic areas after surgical resection or disconnection of the epileptic focus further suggest that such inhibition mechanism do occur in epilepsy (Bruehl et al., 1998; Jokeit et al., 1997). On a clinical point of view, the demonstration of the existence of such inhibition mechanisms in epilepsies with CSWS brings new important insights for the understanding of the pathophysiological mechanisms involved in the psychomotor regression observed in these conditions. Indeed, these data highly suggest that the psychomotor regression is not only related to the neurophysiological impairment at the site of the epileptic foci but also to epilepsy-induced neurophysiological changes in distant connected brain areas.
3

Analyse comparée de la pathologie du traitement temporel auditif dans les troubles du spectre autistique et la dyslexie / Comparative analysis of the pathology of auditory temporal processing in autism spectrum disorder and dyslexia

Jochaut-Roussillon, Delphine 29 May 2015 (has links)
Cette thèse a eu pour objectif de contribuer à la compréhension de deux troubles du langage: ceux associés aux troubles du spectre autistique et la dyslexie. Les récentes avancées sur les mécanismes neuraux de segmentation acoustique du signal de parole indiquent le rôle majeur des oscillations qui offrent des fenêtres d'intégration temporelle à l'échelle de la syllabe et du phonème, unités linguistiques ayant un sens. À l'aide d'enregistrements simultanés d'EEG et d'IRM fonctionnelle durant la visualisation d'un film et au repos, nous avons étudié les rythmes corticaux auditifs et leur topographie chez des sujets sains, autistes et dyslexiques. Nous avons montré que les sujets dyslexiques et les sujets autistes montrent une sensibilité atypique à la structure syllabique et à la structure phonémique. L'activité gamma et l'activité thêta ne s'engagent pas de façon synergique dans l'autisme. L'activité thêta dans le cortex auditif gauche échoue à suivre les modulations de l'enveloppe temporelle du signal de parole dans l'autisme et à potentialiser l'activité gamma qui encode les détails acoustiques. Les troubles du langage dans l'autisme résultent d'une altération du couplage des oscillations lentes et rapides, perturbant le décodage neural du signal de parole. Dans la dyslexie, l'activité corticale auditive thêta n'est pas altérée, et l'activité de modulation de l'activité gamma par l'activité thêta préservée, rendant possible le décodage phonémique, bien qu'atypique. Dans les deux pathologies, ces altérations de l'activité oscillatoire dans le cortex auditif entraînent une altération de la connectivité fonctionnelle entre le cortex auditif et les autres aires du langage. / This research aimed to better understand two language disorders : those associated with autism spectrum disorder and dyslexia. Recent advances indicate how cortical collective neural behaviour intervene in speech segmentation and decoding. Cortical oscillations allow integration temporal windows at syllabic (4-7 Hz) and phonemic (25-35 Hz) time scale, resulting in chunking continuous speech signal into linguistically relevant units. We measured slow fluctuations of rhythmic cortical activity and their topography in healthy subjects, in subjects with autism spectrum disorder and in dyslexic subjects using combined fMRI and EEG. We showed that the sensitivity to syllabic and phonemic density is atypical in dyslexia and in autism. In autism gamma and theta activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations and to down-regulate gamma oscillations that encode speech acoustic details. The language disorder in autism results from an altered coupling of slow and fast oscillations that disrupts the temporal organization of the speech neural code. In dyslexia, theta activity is not altered and theta-paced readout of gamma activity is preserved, enabling the phonemic decoding, even atypical (faster). In both pathologies, auditory oscillatory anomalies lead to atypical oscillation-based connectivity between auditory and other language cortices.
4

EEG-fMRI and dMRI data fusion in healthy subjects and temporal lobe epilepsy : towards a trimodal structure-function network characterization of the human brain / Fusion de données EEG-IRMf et IRMd chez des sujets sains et des patients atteints d'épilepsie du lobe temporal : vers une caractérisation trimodale du réseau structure-fonction du cerveau humain

Wirsich, Jonathan 02 November 2016 (has links)
La caractérisation de la structure du cerveau humain et les motifs fonctionnelles qu’il fait apparaitre est un défi central pour une meilleure compréhension des pathologies du réseau cérébral telle que l’épilepsie du lobe temporal. Cette caractérisation pourrait aider à améliorer la prédictibilité clinique des résultats d’une chirurgie visant à traiter l’épilepsie.Le fonctionnement du cerveau peut être étudié par l’électroencéphalographie (EEG) ou par l’imagerie de résonance magnétique fonctionnelle (IRMf), alors que la structure peut être caractérisé par l’IRM de diffusion (IRMd). Nous avons utilisé ces modalités pour mesurer le fonctionnement du cerveau pendant une tache de reconnaissance de visages et pendant le repos dans le but de faire le lien entre les modalités d’une façon optimale en termes de résolution temporale et spatiale. Avec cette approche on a mis en évidence une perturbation des relations structure-fonction chez les patients épileptiques.Ce travail a contribué à améliorer la compréhension de l’épilepsie comme une maladie de réseau qui affecte le cerveau à large échelle et non pas au niveau d’un foyer épileptique local. Dans le futur, ces résultats pourraient être utilisés pour guider des interventions chirurgicales mais ils fournissent également des approches nouvelles pour évaluer des traitements pharmacologiques selon ses implications fonctionnelles à l’échelle du cerveau entier. / The understanding human brain structure and the function patterns arising from it is a central challenge to better characterize brain network pathologies such as temporal lobe epilepsies, which could help to improve the clinical predictability of epileptic surgery outcome.Brain functioning can be accessed by both electroencephalography (EEG) or functional magnetic resonance imaging (fMRI), while brain structure can be measured with diffusion MRI (dMRI). We use these modalities to measure brain functioning during a face recognition task and in rest in order to link the different modalities in an optimal temporal and spatial manner. We discovered disruption of the network processing famous faces as well a disruption of the structure-function relation during rest in epileptic patients.This work broadened the understanding of epilepsy as a network disease that changes the brain on a large scale not limited to a local epileptic focus. In the future these results could be used to guide clinical intervention during epilepsy surgery but also they provide new approaches to evaluate pharmacological treatment on its functional implications on a whole brain scale.
5

Epileptic syndromes with continuous spike-waves during slow-sleep: new insights into pathophysiology from functional cerebral imaging

De Tiege, Xavier 08 June 2009 (has links)
Epileptic syndromes with continuous spikes and waves during slow sleep (CSWS) are age-related epileptic encephalopathy characterized by the development of various psychomotor regressions in close temporal concordance with the appearance of the electroencephalogram (EEG) pattern of CSWS (Tassinari et al. 2000). This EEG pattern consists in sleep-related activation and diffusion of spike-wave discharges during usually more than 85% of non-rapid eye movement (non-REM) sleep (Tassinari et al. 2000). <p>A minority of the CSWS cases has been associated to cortical or thalamic lesions (symptomatic cases), while in the other cases, the aetiology is unknown. We reported two families combining benign childhood epilepsy with centro-temporal spikes (BCECS), which is the most common form of idiopathic epilepsy in childhood, and cryptogenic epilepsy with CSWS in first-degree relatives. As idiopathic epilepsies are by definition epilepsies related to a genetic predisposition, these data suggests the existence of a continuum ranging from asymptomatic carriers of centro-temporal spikes to cryptogenic epilepsies with CSWS. This hypothesis is further supported by common clinical characteristics between BCECS and epilepsies with CSWS (Fejerman et al. 2000).<p>Epileptic syndromes with CSWS are characterized by an acute phase defined by the emergence of psychomotor deficits, various types of seizures and CSWS activity at around three to eight years of age (Holmes and Lenck-Santini, 2006; Veggiotti et al. 2001). This acute phase is followed by a recovery phase in which patients’ clinical condition improves together with the remission of CSWS pattern, which spontaneously occur at around 15 years of age but may be prompted by using antiepileptic drugs (AED) including corticosteroids (Holmes and Lenck-Santini, 2006; Veggiotti et al. 2001). This biphasic evolution suggests that CSWS activity largely contributes to the psychomotor deficits observed in these patients (Holmes and Lenck-Santini, 2006; Van Bogaert et al. 2006). However, some authors still consider CSWS activity as an epiphenomenon reflecting the underlying brain pathology, rather than the direct cause of the psychomotor regression (Aldenkamp and Arends, 2004). The pathophysiological mechanisms of how CSWS activity could actually lead to psychomotor regression are still poorly understood.<p>Functional cerebral imaging techniques such as positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), represent unique ways to non-invasively study the impact of epileptic activity on normal brain function. The PET technique using [18F]-fluorodeoxyglucose (FDG) gives information about the regional neuronal glucose consumption via the neurometabolic coupling while the fMRI technique studies the regional perfusional changes directly related to specific events of interest via the neurovascular coupling. We applied both FDG-PET and EEG combined with fMRI (EEG-fMRI) techniques to epileptic children with CSWS to better approach the functional repercussions of CSWS activity on neurophysiological functions and to determine the potential pathophysiological link between CSWS activity and psychomotor regression.<p>In a first FDG-PET study, we determined the regional cerebral glucose metabolic patterns at the acute phase of CSWS in 18 children. We found three types of metabolic patterns: the association of focal hypermetabolism with distinct hypometabolism in 10 patients, focal hypometabolism without any associated area of increased metabolism in five children, and the absence of any significant metabolic abnormality in three patients. The hypermetabolic brain areas were anatomically related to an EEG focus. This anatomical relationship was clearly less consistent for hypometabolic regions. The metabolic abnormalities involved mainly the associative cortices. The metabolic heterogeneity found in these children could be due to the use of corticosteroids before PET as it was significantly associated with the absence of focal hypermetabolism. At the group level, patients with at least one hypermetabolic brain areas showed significant increased metabolism in the right parietal region that was associated to significant hypometabolism in the prefrontal cortex. This finding was interpreted as a phenomenon of remote inhibition of the frontal lobes by highly epileptogenic and hypermetabolic posterior cortex. This hypothesis was supported by effective connectivity analyses which demonstrated the existence of significant changes in the metabolic relationship between these brain areas in this group of children compared to the control group or to the group of children without any significant hypermetabolic brain area. <p>This remote inhibition hypothesis would be reinforced by the demonstration, at the recovery phase of CSWS, of a common resolution of hypermetabolism at the site of epileptic foci and hypometabolism in distant connected brain areas. We thus performed a second FDG-PET study to determine the evolution of cerebral metabolism in nine children recovering from CSWS. At the acute phase of CSWS, all children had a metabolic pattern characterized by the association of focal hypermetabolism with distinct focal hypometabolic areas. The evolution to CSWS recovery was characterized by a complete or almost complete regression of both hypermetabolic and hypometabolic abnormalities. At the group level, the altered effective connectivity found at the acute phase between focal hypermetabolism (centro-parietal regions and right fusiform gyrus) and widespread hypometabolism (prefrontal and orbito-frontal cortices, temporal lobes, left parietal cortex, precuneus and cerebellum) markedly regressed at recovery. These results were of particular interest because they strongly suggested that the metabolic abnormalities observed during the acute phase of CSWS were mainly related to the neurophysiological effects of CSWS activity and not to the underlying cause of the epileptic disease. Moreover, this study confirmed that phenomena of remote inhibition do occur in epileptic syndromes with CSWS. <p>EEG-fMRI is a functional cerebral imaging technique that allows non-invasive mapping of haemodynamic changes directly associated to epileptic activity. In a first EEG-fMRI study, we determined the clinical relevance of the perfusional changes linked to interictal epileptic discharges in a group of seven children with pharmacoresistant focal epilepsy. This study showed that the EEG-fMRI technique is a promising tool to non-invasively localize the epileptic focus and its repercussion on normal brain function in children with epilepsy. Then, to further demonstrate the involvement of CSWS activity in the neurophysiological changes detected by FDG-PET, we used the EEG-fMRI technique to study the perfusional changes directly related to the epileptic activity in an epileptic girl with CSWS. This patient developed a cognitive and behavioural regression in association with a major increase in frequency and diffusion of the spike-wave discharges during the awake state (spike index: 50-75%) and non-REM sleep (spike index: 85-90%). The patient’s neuropsychological profile was dominated by executive dysfunction and memory impairment. During runs of secondarily generalized spike-wave discharges, EEG-fMRI demonstrated deactivations in the lateral and medial fronto-parietal cortices, posterior cingulate gyrus and cerebellum together with focal relative activations in the right frontal, parietal and temporal cortices. These results suggested that the neuropsychological impairment in this case could be related to specific cortical dysfunction secondary to the spread of the epileptic activity from focal hypermetabolic foci. <p>Taken together, both FDG-PET and EEG-fMRI investigations performed in epileptic children with CSWS have shown increases in metabolism/perfusion at the site of the epileptic focus that were associated to decreases in metabolism/perfusion in distinct connected brain areas. These data highly suggest that the neurophysiological effects of CSWS activity are not restricted to the epileptic focus but spread to connected brain areas via a possible mechanism of surrounding and/or remote inhibition. This mechanism is characterised by an epilepsy-induced inhibition of neurons that surround or are remote from the epileptic focus and connected with it via cortico-cortical or polysynaptic pathways (Witte and Bruehl, 1999). The existence of surrounding and remote inhibition phenomena have been well documented in different types of animal models of focal epilepsy using various functional cerebral imaging methods such as autoradiography or optical imaging (Bruehl et al. 1998; Bruehl and Witte, 1995; Witte et al. 1994). Their occurrence in human epilepsy have also been suspected in temporal or extra-temporal lobe epilepsies using FDG-PET, EEG-fMRI or single photon emission computed tomography (SPECT) (Blumenfeld et al. 2004; Schwartz and Bonhoeffer, 2001; Van Paesschen et al. 2003; Van Paesschen et al. 2007). Moreover, the demonstration of the regression of distant hypometabolic areas after surgical resection or disconnection of the epileptic focus further suggest that such inhibition mechanism do occur in epilepsy (Bruehl et al. 1998; Jokeit et al. 1997). On a clinical point of view, the demonstration of the existence of such inhibition mechanisms in epilepsies with CSWS brings new important insights for the understanding of the pathophysiological mechanisms involved in the psychomotor regression observed in these conditions. Indeed, these data highly suggest that the psychomotor regression is not only related to the neurophysiological impairment at the site of the epileptic foci but also to epilepsy-induced neurophysiological changes in distant connected brain areas. <p><p> / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished

Page generated in 0.0223 seconds