1 |
A Game Theoretic Framework for User Association & Inter-cell Interference Management in LTE Cellular Networks / Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTETrabelsi, Nessrine 20 December 2016 (has links)
Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé. / Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.
|
2 |
Optimisation et Auto-Optimisation dans les réseaux LTE / Optimization and Self-Optimization in LTE-Advanced NetworksTall, Abdoulaye 17 December 2015 (has links)
Le réseau mobile d’Orange France comprend plus de 100 000 antennes 2G, 3G et 4G sur plusieurs bandes de fréquences sans compter les nombreuses femto-cells fournies aux clients pour résoudre les problèmes de couverture. Ces chiffres ne feront que s’accroître pour répondre à la demande sans cesse croissante des clients pour les données mobiles. Cela illustre le défi énorme que rencontrent les opérateurs de téléphonie mobile en général à savoir gérer un réseau aussi complexe tout en limitant les coûts d’opération pour rester compétitifs. Cette thèse s’attache à utiliser le concept SON (réseaux auto-organisants) pour réduire cette complexité en automatisant les tâches répétitives ou complexes. Plus spécifiquement, nous proposons des algorithmes d’optimisation automatique pour des scénarios liés à la densification par les small cells ou les antennes actives. Nous abordons les problèmes classiques d’équilibrage de charge mais avec un lien backhaul à capacité limitée et de coordination d’interférence que ce soit dans le domaine temporel (notamment avec le eICIC) ou le domaine fréquentiel. Nous proposons aussi des algorithmes d’activation optimale de certaines fonctionnalités lorsque cette activation n’est pas toujours bénéfique. Pour la formulation mathématique et la résolution de tous ces algorithmes, nous nous appuyons sur les résultats de l’approximation stochastique et de l’optimisation convexe. Nous proposons aussi une méthodologie systématique pour la coordination de multiples fonctionnalités SON qui seraient exécutées en parallèle. Cette méthodologie est basée sur les jeux concaves et l’optimisation convexe avec comme contraintes des inégalités matricielles linéaires. / The mobile network of Orange in France comprises more than 100 000 2G, 3G and 4G antennas with severalfrequency bands, not to mention many femto-cells for deep-indoor coverage. These numbers will continue toincrease in order to address the customers’ exponentially increasing need for mobile data. This is an illustrationof the challenge faced by the mobile operators for operating such a complex network with low OperationalExpenditures (OPEX) in order to stay competitive. This thesis is about leveraging the Self-Organizing Network(SON) concept to reduce this complexity by automating repetitive or complex tasks. We specifically proposeautomatic optimization algorithms for scenarios related to network densification using either small cells orActive Antenna Systems (AASs) used for Vertical Sectorization (VeSn), Virtual Sectorization (ViSn) and multilevelbeamforming. Problems such as load balancing with limited-capacity backhaul and interference coordination eitherin time-domain (eICIC) or in frequency-domain are tackled. We also propose optimal activation algorithms forVeSn and ViSn when their activation is not always beneficial. We make use of results from stochastic approximationand convex optimization for the mathematical formulation of the problems and their solutions. We also proposea generic methodology for the coordination of multiple SON algorithms running in parallel using results fromconcave game theory and Linear Matrix Inequality (LMI)-constrained optimization.
|
Page generated in 0.0246 seconds